
Liberty BASIC Community Wiki

Please note that currently, this program will only work over a home network between 2 computers, not
between 2 buildings. I'm working on it.

If you have problems with this code, please leave a comment on the discussion page. -
 spork222 Apr 13,

2006

IMPORTANT: This is a simple demo which uses only winsock calls (Windows built-in) and
WMLiberty.dll for event trapping. WMLiberty can be found here.

HOW TO USE THIS PROGRAM.

Same computer:
1. Bring up 2 copies of LB.
2. Copy and paste the program into both of them.
3. In the first one, click run. Then, click the "Server" radiobutton, enter a display name, and click "Start."
4. The last message should say something like "Clients connect to [192.168.1.1]"
5. In the second copy of LB, run the program.
6. Copy and paste the address in block quotes from the first running program (Server) to the "IP Address"
text box in the 2nd program.
7. Enter a display name, and click "Start."
8. Chat away!

2 computers:
1. On the first computer, bring up LB, copy and paste this program into the editor, and click Run.
2. Click the Server radiobutton, enter a display name, and click "Start".
3. Write down the address in block quotes (See step 4 above)
4. On the second computer, bring up LB, copy and paste this program into the editor, and click Run.
5. Type in the address you wrote down from above into the "IP Address" box.
6. Enter a display name.
7. Click "Start."
8. Start chatting!

Thanks to Brent Thorn who wrote the original program.

'*** Simple Server/Client Demo
'*** Phil, April 2006
'*** Original program by Brent Thorn, Feb. 2004
'This is a simple "chat" type application.
'You can set up a server, then connect, and
'both sides can talk back and forth.

nomainwin
WindowWidth = 185
WindowHeight = 230

 page 1 / 14

https://www.wikispaces.com/user/view/spork222
https://www.wikispaces.com/user/view/spork222
http://members.aol.com/b6sw/dlls/wmlib.html

Liberty BASIC Community Wiki

UpperLeftX=int((DisplayWidth-WindowWidth)/2)
UpperLeftY=int((DisplayHeight-WindowHeight)/2)

groupbox #main.groupbox2, "Mode", 5, 7, 165, 45
TextboxColor$ = "white"
textbox #main.textbox1, 5, 77, 155, 25
radiobutton #main.radiobutton3, "Client", [radiobutton3Set], [radiobut
tonReset], 100, 22, 58, 25
radiobutton #main.radiobutton4, "Server", [radiobutton4Set], [radiobut
tonReset], 15, 22, 65, 25
statictext #main.statictext5, "IP Address", 10, 57, 144, 20
button #main.button7,"Start",[button7Click], UL, 55, 167, 50, 25
statictext #main.scname1, "Display name:", 5, 107, 100, 20
textbox #main.scrname2, 5, 127, 155, 25

open "Chat" for window_nf as #main
print #main, "font ms_sans_serif 10"
print #main, "trapclose [quit.main]"
print #main.radiobutton3, "set"
wait

[radiobutton3Set]
 server=0
 print #main.textbox1, "!enable"
 print #main.textbox1, "!show"
 print #main.statictext5, "!enable"
 wait

[radiobutton4Set]
 server=1
 print #main.textbox1, ""
 print #main.textbox1, "!hide"
 print #main.statictext5, "!disable"
 wait

[radiobuttonReset]
 wait

[quit.main]
 close #main
 end

[button7Click]
print #main.textbox1, "!contents? var$"
if server=0 and validip$(var$)="" then notice "Invalid IP Address":wai

 page 2 / 14

Liberty BASIC Community Wiki

t
print #main.scrname2, "!contents? name$"
if name$="" then notice "Please enter a display name":wait
close #main
addr$=validip$(var$)
for x=1 to 4
part$=word$(addr$,x)
part$=dechex$(val(part$))
if len(part$)=1 then part$="0"+part$
connaddr$=connaddr$+part$
next x
print connaddr$
connaddr=hexdec(connaddr$)

global accepts

 PORT = 4000

 NoMainWin

 Open "wsock32" For DLL As #wsock32
 Open "WMLiberty" For DLL As #wmlib

 ' Create a window.
 WindowWidth = 400
 WindowHeight = 400
 UpperLeftX=int((DisplayWidth-WindowWidth)/2)
 UpperLeftY=int((DisplayHeight-WindowHeight)/2)

 TexteditorColor$ = "white"
 texteditor #s.te, 10, 2, 370, 275
 TextboxColor$ = "white"
 textbox #s.t, 10, 287, 370, 25
 button #s.s,"Send",[send], UL, 10, 317, 165, 25
 button #s.c,"Clear",[clear], UL, 215, 317, 165, 25

 open "Chat" for window_nf as #s
 print #s, "font ms_sans_serif 10"
 print #s.te, "!font system 10"
 print #s.te, "!autoresize"
 print #s.t, "!setfocus"
 print #s, "trapclose [s_Close]"

 ' Now create a socket, bind it to a local port, set some
 ' network events to trap, and start listening for clients.

 page 3 / 14

Liberty BASIC Community Wiki

 Call WinsockInit

 Err = 1 ' Assume failure
 If WSAStartup(MAKEWORD(2, 2)) = 0 Then
 #s.te "> Winsock initialized."

 sockaddr.sinfamily.struct = 2 'AF_INET
 sockaddr.sinzero.struct = String$(8, 0)
 sockaddr.sinport.struct = htons(PORT)
 If sockaddr.sinport.struct <> -1 Then
 sockaddr.sinaddr.struct = htonl(connaddr)
 If sockaddr.sinaddr.struct <> -1 Then
 sock = socket(2, 1, 0) 'AF_INET=2:SOCK_STREAM=1
 If sock <> -1 Then
 #s.te "> Socket created."

 if server=1 and bind(sock) = 0 Then #s.te "> Port
bind successful." else if server=1 then [breaknet]

 Callback lpfnCB, SockProc(Long, Long, Long, L
ong), Long
 rc = SetWMHandler(HWnd(#s), _WM_USER, lpfnCB,
1)
 'FD_READ=1:FD_WRITE=2:FD_OOB=4:FD_ACCEPT=8:FD_
CONNECT=16:FD_CLOSE=32
 flags=1 or 2 or 8 or 32
 if server=0 then flags=flags or 16
 If WSAAsyncSelect(sock, HWnd(#s), _WM_USER, fl
ags) <> -1 Then
 #s.te "> Events selected."

 if server=1 and listen(sock, 1) = 0 Then #
s.te "> Listening for incoming connections.": Err = 0 ' Success!
 If server=0 then
 if connect(sock)=-1 and WSAGetLastError()=
10035 then
 #s.te "> Connect requested."
 Err=0
 end if
 end if
 End If
 [breaknet]
 End If
 End If
 End If

 page 4 / 14

Liberty BASIC Community Wiki

 End If

 If Err Then
 #s.te "> ERROR: "; GetWSAErrorString$(WSAGetLastError())
 If sock <> -1 Then
 rc = closesocket(sock)
 End If
 Else
 if server=1 then
 myip = GetLocalIP()
 #s.te "> Clients connect to ["; InetNtoA$(myip); "]"
 end if
 End If

[s_Wait]
 Scan
 CallDLL #kernel32, "Sleep", _
 100 As Long, _
 rc As Void
 GoTo [s_Wait]
[s_Close]
 Call WSACleanup

 Close #s

 Close #wmlib
 Close #wsock32

 End

[send]
 print #s.t, "!contents? var$"
 if server=1 then
 if Send(accepts,name$+"> "+var$+chr$(13),0)=-1 then #s.te "> E
RROR: "; GetWSAErrorString$(WSAGetLastError())
 else
 if Send(sock,name$+"> "+var$+chr$(13),0)=-1 then #s.te "> ERRO
R: "; GetWSAErrorString$(WSAGetLastError())
 end if
 #s.te name$+"> "+var$
 print #s.t, ""
 goto [s_Wait]

[clear]

 page 5 / 14

Liberty BASIC Community Wiki

 print #s.t, ""
 print #s.t, "!setfocus"
 goto [s_Wait]

'*** Application Procedures ***

Function SockProc(hWnd, uMsg, sock, lParam)
' Callback function to handle a Windows message
' forwarded by WMLiberty. Called when a relevant
' network event occurs.

 Select Case LOWORD(lParam)
 Case 1 'FD_READ
 buf$ = Recv$(sock, 8192, 0)
 While Len(buf$)
 #s.te woBang$(buf$);

 buf$ = Recv$(sock, 8192, 0)
 Wend
 Case 2 'FD_WRITE
 'TODO
 Case 8 'FD_ACCEPT
 accepts = accept(sock)
 #s.te ">Socket: ";accepts

 #s.te "> Accepted connection from "; _
 InetNtoA$(sockaddr.sinaddr.struct); ":"; _
 htons(sockaddr.sinport.struct); "."
 case 16 'FD_CONNECT
 if HIWORD(lParam)=0 then
 #s.te "> Connect complete."
 x=Send(sock,"Hi!"+chr$(13),0)
 else
 #s.te "> Connect failed."
 end if
 Case 32 'FD_CLOSE
 ' Flush the buffers.
 buf$ = Recv$(sock, 8192, 0)
 While Len(buf$)
 #s.te woBang$(buf$);

 buf$ = Recv$(sock, 8192, 0)
 Wend
 #s.te "> Connection Closed."
 End Select
SockProc=1

 page 6 / 14

Liberty BASIC Community Wiki

End Function

Sub WinsockInit
' Initializes structs used in Winsock calls.
 Struct hostent, _
 hname As Long, _
 haliases As Long, _
 haddrtype As Word, _
 hlength As Word, _
 haddrlist As Long

 Struct sockaddr, _
 sinfamily As Short, _
 sinport As UShort, _
 sinaddr As ULong, _
 sinzero As Char[8]

 Struct WSAData, _
 wVersion As Word, _
 wHighVersion As Word, _
 szDescription As Char[257], _
 szSystemStatus As Char[129], _
 iMaxSockets As Word, _
 iMaxUdpDg As Word, _
 lpVendorInfo As Long
End Sub

Function woBang$(raw$)
' Kludge to print a string that could start with an
' exclamation point, or bang (!). Am I missing something?
 woBang$ = raw$
 bangs = 0
 While Mid$(raw$, bangs+1, 1) = "!"
 bangs = bangs + 1
 Wend
 If bangs Then
 bang$ = Left$(raw$, bangs)
 woBang$ = Mid$(raw$, bangs+1)

 #s.te "!Lines ln"
 #s.te "!Line "; ln; " ln$"
 #s.te "!Select "; Len(ln$)+1; " "; ln
 #s.te "!Insert bang$"
 #s.te "!Select 1 1"
 End If
End Function

 page 7 / 14

Liberty BASIC Community Wiki

'*** General Procedures ***

Function LOWORD(dw)
 LOWORD = (dw And 65535)
End Function

Function HIWORD(dw)
 HIWORD = int((dw / 65536))
End Function

Function MAKEWORD(b1, b2)
 MAKEWORD = b1 Or (256 * b2)
End Function

Function String$(num, ch)
 If num > 0 Then
 String$ = Chr$(ch)
 While Len(String$) < num
 String$ = String$ + String$
 Wend
 String$ = Left$(String$, num)
 End If
End Function

'*** Winsock Wrappers ***

Function GetHostByAddr$(addr)
 Struct p, addr As ULong
 p.addr.struct = addr
 CallDLL #wsock32, "gethostbyaddr", _
 p As Struct, _
 4 As Long, _
 2 As Long, _ 'AF_INET=2
 phe As Long
 If phe Then
 helen = Len(hostent.struct)
 CallDLL #kernel32, "RtlMoveMemory", _
 hostent As Struct, _
 phe As ULong, _
 helen As Long, _
 rc As Void
 GetHostByAddr$ = WinString(hostent.hname.struct)
 End If
End Function

 page 8 / 14

Liberty BASIC Community Wiki

Function GetHostByName$(sName$)
 CallDLL #wsock32, "gethostbyname", _
 sName$ As Ptr, _
 phe As ULong
 If phe Then
 helen = Len(hostent.struct)
 CallDLL #kernel32, "RtlMoveMemory", _
 hostent As Struct, _
 phe As ULong, _
 helen As Long, _
 rc As Void
 GetHostByName$ = WinString(hostent.hname.struct)
 End If
End Function

Function GetHostName$()
 buf$ = Space$(256)+Chr$(0)
 CallDLL #wsock32, "gethostname", _
 buf$ As Ptr, _
 256 As Long, _
 rc As Long
 GetHostName$ = Trim$(buf$)
End Function

Function GetLocalIP()
 sName$ = GetHostName$()
 CallDLL #wsock32, "gethostbyname", _
 sName$ As Ptr, _
 phe As ULong
 If phe Then
 helen = Len(hostent.struct)
 CallDLL #kernel32, "RtlMoveMemory", _
 hostent As Struct, _
 phe As ULong, _
 helen As Long, _
 rc As Void
 plong = hostent.haddrlist.struct
 Struct p, addrlist As ULong
 CallDLL #kernel32, "RtlMoveMemory", _
 p As Struct, _
 plong As ULong, _
 4 As Long, _
 rc As Void
 plong = p.addrlist.struct
 Struct p, addr As ULong
 hlength = hostent.hlength.struct

 page 9 / 14

Liberty BASIC Community Wiki

 CallDLL #kernel32, "RtlMoveMemory", _
 p As Struct, _
 plong As ULong, _
 hlength As Long, _
 rc As Void
 GetLocalIP = p.addr.struct
 End If
End Function

Function GetWSAErrorString$(errnum)
 Select Case errnum
 Case 10004: e$ = "Interrupted system call."
 Case 10009: e$ = "Bad file number."
 Case 10013: e$ = "Permission Denied."
 Case 10014: e$ = "Bad Address."
 Case 10022: e$ = "Invalid Argument."
 Case 10024: e$ = "Too many open files."
 Case 10035: e$ = "Operation would block."
 Case 10036: e$ = "Operation now in progress."
 Case 10037: e$ = "Operation already in progress."
 Case 10038: e$ = "Socket operation on nonsocket."
 Case 10039: e$ = "Destination address required."
 Case 10040: e$ = "Message too long."
 Case 10041: e$ = "Protocol wrong type for socket."
 Case 10042: e$ = "Protocol not available."
 Case 10043: e$ = "Protocol not supported."
 Case 10044: e$ = "Socket type not supported."
 Case 10045: e$ = "Operation not supported on socket."
 Case 10046: e$ = "Protocol family not supported."
 Case 10047: e$ = "Address family not supported by protocol fam
ily."
 Case 10048: e$ = "Address already in use."
 Case 10049: e$ = "Can't assign requested address."
 Case 10050: e$ = "Network is down."
 Case 10051: e$ = "Network is unreachable."
 Case 10052: e$ = "Network dropped connection."
 Case 10053: e$ = "Software caused connection abort."
 Case 10054: e$ = "Connection reset by peer."
 Case 10055: e$ = "No buffer space available."
 Case 10056: e$ = "Socket is already connected."
 Case 10057: e$ = "Socket is not connected."
 Case 10058: e$ = "Can't send after socket shutdown."
 Case 10059: e$ = "Too many references: can't splice."
 Case 10060: e$ = "Connection timed out."
 Case 10061: e$ = "Connection refused."
 Case 10062: e$ = "Too many levels of symbolic links."

 page 10 / 14

Liberty BASIC Community Wiki

 Case 10063: e$ = "File name too long."
 Case 10064: e$ = "Host is down."
 Case 10065: e$ = "No route to host."
 Case 10066: e$ = "Directory not empty."
 Case 10067: e$ = "Too many processes."
 Case 10068: e$ = "Too many users."
 Case 10069: e$ = "Disk quota exceeded."
 Case 10070: e$ = "Stale NFS file handle."
 Case 10071: e$ = "Too many levels of remote in path."
 Case 10091: e$ = "Network subsystem is unusable."
 Case 10092: e$ = "Winsock DLL cannot support this application.
"
 Case 10093: e$ = "Winsock not initialized."
 Case 10101: e$ = "Disconnect."
 Case 11001: e$ = "Host not found."
 Case 11002: e$ = "Nonauthoritative host not found."
 Case 11003: e$ = "Nonrecoverable error."
 Case 11004: e$ = "Valid name, no data record of requested type
."
 Case Else: e$ = "Unknown error "; errnum; "."
 End Select
 GetWSAErrorString$ = e$
End Function

Function InetNtoA$(inaddr)
 CallDLL #wsock32, "inet_ntoa", _
 inaddr As ULong, _
 pstr As ULong
 InetNtoA$ = WinString(pstr)
End Function

Function Recv$(s, buflen, flags)
 Recv$ = Space$(buflen)+Chr$(0)
 CallDLL #wsock32, "recv", _
 s As Long, _
 Recv$ As Ptr, _
 buflen As Long, _
 flags As Long, _
 buflen As Long
 Recv$ = Left$(Recv$, buflen)
End Function

Function Send(s, buf$, flags)
 buflen=len(buf$)
 CallDLL #wsock32, "send", _
 s As Long, _

 page 11 / 14

Liberty BASIC Community Wiki

 buf$ As Ptr, _
 buflen As Long, _
 flags As Long, _
 Send As Long
End Function

'*** Winsock Thin Wrappers ***

Function accept(s)
 Struct p, length As Long
 p.length.struct = Len(sockaddr.struct)
 CallDLL #wsock32, "accept", _
 s As Long, _
 sockaddr As Struct, _
 p As Struct, _
 accept As Long
End Function

Function bind(s)
 namelen = Len(sockaddr.struct)
 CallDLL #wsock32, "bind", _
 s As Long, _
 sockaddr As Struct, _
 namelen As Long, _
 bind As Long
End Function

Function closesocket(s)
 CallDLL #wsock32, "closesocket", _
 s As Long, _
 closesocket As Long
End Function

Function htonl(hostlong)
 CallDLL #wsock32, "htonl", _
 hostlong As ULong, _
 htonl As ULong
End Function

Function htons(hostshort)
 CallDLL #wsock32, "htons", _
 hostshort As Word, _
 htons As Word
End Function

Function inetaddr(cp$)

 page 12 / 14

Liberty BASIC Community Wiki

 CallDLL #wsock32, "inet_addr", _
 cp$ As Ptr, _
 inetaddr As ULong
End Function

Function listen(s, backlog)
 CallDLL #wsock32, "listen", _
 s As Long, _
 backlog As Long, _
 listen As Long
End Function

Function socket(af, type, protocol)
 CallDLL #wsock32, "socket", _
 af As Long, _
 type As Long, _
 protocol As Long, _
 socket As Long
End Function

Function WSAAsyncSelect(s, hWnd, wMsg, lEvent)
 CallDLL #wsock32, "WSAAsyncSelect", _
 s As Long, _
 hWnd As ULong, _
 wMsg As ULong, _
 lEvent As Long, _
 WSAAsyncSelect As Long
End Function

Sub WSACleanup
 CallDLL #wsock32, "WSACleanup", _
 r As Void
End Sub

Function WSAGetLastError()
 CallDLL #wsock32, "WSAGetLastError", _
 WSAGetLastError As Long
End Function

Function WSAStartup(wVersionRequested)
 CallDLL #wsock32, "WSAStartup", _
 wVersionRequested As Word, _
 WSAData As Struct, _
 WSAStartup As Long
End Function

 page 13 / 14

Liberty BASIC Community Wiki

Function connect(s)
 namelen = Len(sockaddr.struct)
 CallDLL #wsock32, "connect", _
 s As Long, _
 sockaddr As Struct, _
 namelen As Long, _
 connect As Long
End Function

'*** WMLiberty Thin Wrappers ***

Function SetWMHandler(hWnd, uMsg, lpfnCB, lSuccess)
 CallDLL #wmlib, "SetWMHandler", _
 hWnd As Long, _
 uMsg As Long, _
 lpfnCB As Long, _
 lSuccess As Long, _
 SetWMHandler As Long
End Function

function validip$(var$)
fail=0
 print var$
 for x=1 to len(var$)
 if mid$(var$,x,1)="." then var$=left$(var$,x-1)+" "+right$(var
$,len(var$)-x)
 next x
 print var$
 if word$(var$,5)<>"" then goto [endoffuncvalidip]
 if word$(var$,4)="" then goto [endoffuncvalidip]
 for x=1 to 4
 buf$=word$(var$,x)
 buf$=trim$(buf$)
 print buf$
 if len(buf$)>3 then fail=1
 if val(buf$)=0 and buf$<>"0" then fail=1
 next x
if fail=0 then validip$=var$
[endoffuncvalidip]
end function

Powered by TCPDF (www.tcpdf.org)

 page 14 / 14

http://www.tcpdf.org

	wsock_demo

