Liberty BASIC Community Wiki

fgvarfort
Code to calculate the SHA256 (Secure Hash Algorithm) of a string.

SUB

' Secure Hash Al gorithm (SHA256)

‘" This is a Liberty Basic inplenmentation of
of the SHA256 one-way encryption al gorithm

Ported to Liberty Basic by fntSoftware at
" http://ww.fntsoftware. com

" License:
http://creativecommons. org/li censes/by/ 3.0/

You may use it in any application, including
" commercial products. A credit to the author
and a link to the website nust be included

" in your program s docunentation or readne
file, and in any source code released to

" the public.

" http://ww. fntsoftware.com

'd obal data for SHA256
DI M SHA256. Dat a(0)
GLOBAL SHA256. Dat aCount

"Print a test SHA256 val ue
Print SHA256. Eval uate$("test")

SHA256. Convert Towbr dArray sMessage$

MODULUS. BI TS =
CONGRUENT. BI TS
BI TS. TO A BYTE =
BYTES. TO. A WORD = 4

512
= 448
8

page 1/8

https://www.wikispaces.com/user/view/fqvarfort
https://www.wikispaces.com/user/view/fqvarfort

Liberty BASIC Community Wiki

BI TS. TO A. WORD = BYTES. TO A WORD * BI TS. TO A. BYTE

"Cet the length of the source string
| MessagelLengt h = Len(sMessage$)

' Get padded nunber of words. Message needs to be congruent to 448 bits

"modul o 512 bits. If it is exactly congruent to 448 bits, nodulo 512 b
its
"it must still have another 512 bits added. 512 bits = 64 bytes

"(or 16 * 4 byte words), 448 bits = 56 bytes. This neans | Nunber O Word
S nust
"be a multiple of 16 (i.e. 16 * 4 (bytes) * 8 (bits))
| Number O Words = (Int((l MessageLength + _
I nt ((MODULUS. BI TS - CONGRUENT.BITS) / BITS. TO A BYTE)) /
| nt (MODULUS. BI TS / BITS. TO A BYTE)) + 1) *
I nt (MODULUS. BI TS / BITS. TO. AL WORD)

"Resi ze the word array and store the nunber of
"elenents in the word array for |ater use

ReDi m SHA256. Dat a(| Nunber Of Words - 1)

SHA256. Dat aCount = | Nunber O Wor ds

' Conbi ne each bl ock of 4 bytes (ascii code of character) into one |ong
"value and store in the nmessage. The high-
order (nmost significant) bit of
"each byte is listed first. However,
| ByteCount = 0
| Byt ePosition = 0
Do Until |ByteCount >= | MessagelLength
" Each word is 4 bytes
| WordCount = Int (I ByteCount / BYTES. TO A WORD)
| BytePosition = (3 - (|IByteCount Mbd BYTES. TO A WORD)) *
BI TS. TO A. BYTE

" NOTE: This is where we are using just the first byte of each unicode

" character, you may want to nake the change here, or to the SHA256 ne
t hod

' so it accepts a byte array.

| Byte = Asc(M d$(sMessage$, | ByteCount + 1, 1))

page 2/ 8

Liberty BASIC Community Wiki

SHA256. Dat a(| Wor dCount) = SHA256. Dat a(| Wor dCount) O
SHA256. LShi ft (|1 Byte, | BytePosition)
| Byt eCount = | ByteCount + 1
Loop

"Term nate according to SHA-256 rules with a 1 bit, zeros and the | eng
thin

"bits stored in the last two words

| WordCount = Int (I ByteCount / BYTES. TO A WORD)

| BytePosition = (3 - (|IByteCount Mod BYTES. TO A WORD)) * BITS. TO
A. BYTE

"Add a terminating 1 bit, all the rest of the bits to the end of the
"word array will default to zero
SHA256. Dat a(| Wor dCount) = SHA256. Dat a(| WordCount) O _
SHA256. LShi ft (HEXDEC(" &H30"), | Byt ePosi ti on)

"We put the length of the nmessage in bits into the last two words, to
get

"the length in bits we need to nultiply by 8 (or left shift 3). This
eft

"shifted value is put in the last word. Any bits shifted off the left
edge

"need to be put in the penultimte word, we can work out which bits by
shifting
‘right the length by 29 bits.
SHA256. Dat a(| Nunmber Of Wrds - 1)
SHA256. Dat a(| Nunber O Wrds - 2)
| MessagelLengt h, 29)

SHA256. LShi ft (1 MessagelLengt h, 3)
SHA256. RShi ft (

End Sub

SUB SHA256. I nitialize
DI M SHA256. K(64)
"Initialize the K array

SHA256. K(0) = HEXDEC(" &H428A2F98")
SHA256. K(1) = HEXDEC(" &H71374491")

page 3/8

Liberty BASIC Community Wiki

SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.
SHA256.

K(2)

K(3)

K(4)

K(5)

K(6)

K(7)

K(8)

K(9)

K(10)
K(11)
K(12)
K(13)
K(14)
K(15)
K(16)
K(17)
K(18)
K(19)
K(20)
K(21)
K(22)
K(23)
K(24)
K(25)
K(26)
K(27)
K(28)
K(29)
K(30)
K(31)
K(32)
K(33)
K(34)
K(35)
K(36)
K(37)
K(38)
K(39)
K(40)
K(41)
K(42)
K(43)
K(44)
K(45)
K(46)
K(47)

= HEXDEC(" &HB5COFBCF")
= HEXDEC(" &HE9B5DBA5")

HEXDEC(" &H3956C25B")
HEXDEC(" &H59F111F1")
HEXDEC(" &H923F82A4")

= HEXDEC(" &HAB1C5ED5")
= HEXDEC(" &HD807AA98")
= HEXDEC(" &H12835B01")

HEXDEC(" &H243185BE")
HEXDEC(" &H550C7DC3")
HEXDEC(" &H72BESD74")
HEXDEC(" &H80DEB1FE")

= HEXDEC(" &HOBDCO6AT7")

HEXDEC(" &HC19BF174")
HEXDEC(" &HE49B69CL")
HEXDEC(" &HEFBEA4786")
HEXDEC(" &HFC19DC5")

HEXDEC(" &H240CALCC")

= HEXDEC(" &H2DE92CBF")

HEXDEC(" &HAATA84AA")
HEXDEC(" &H5CBOAIDC")
HEXDEC(" &H76F988DA")
HEXDEC(" &H983E5152")
HEXDEC(" &HA831C66D")

= HEXDEC(" &HB00327C8")

HEXDEC(" &HBF597FC7")
HEXDEC(" &HC6E00BF3")
HEXDEC(" &HD5A79147")
HEXDEC(" &H6CA6351")

HEXDEC(" &H14292967")

= HEXDEC(" &H27B70A85")

HEXDEC(" &H2E1B2138")
HEXDEC(" &H4D2C6DFC")
HEXDEC(" &H53380D13")
HEXDEC(" &H650A7354")
HEXDEC(" &H766A0ABB")

= HEXDEC(" &H81C2C92E")

HEXDEC(" &H92722C85")
HEXDEC(" &HA2BFESAL")
HEXDEC(" &HA81A664B")
HEXDEC(" &HC24B8B70")
HEXDEC(" &HC76C51A3")

= HEXDEC(" &HD192E819")

HEXDEC(" &HD6990624")
HEXDEC(" &HF40E3585")
HEXDEC(" &H106AA070")

page 4 /8

Liberty BASIC Community Wiki

SHA25
SHA25
SHA25
SHA25
SHA25
SHA25
SHA25
SHA25
SHA25
SHA25
SHA25
SHA25
SHA25
SHA25
SHA25
SHA25

END SUB

6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.

K(48)
K(49)
K(50)
K(51)
K(52)
K(53)
K(54)
K(55)
K(56)
K(57)
K(58)
K(59)
K(60)
K(61)
K(62)
K(63)

= HEXDEC(" &H19A4C116")
= HEXDEC(" &HLE376C08")

HEXDEC(" &H2748774C")
HEXDEC(" &H34BOBCB5")
HEXDEC(" &H391C0CB3")

= HEXDEC(" &H4EDBAA4A")
= HEXDEC(" &H5B9CCA4F")
= HEXDEC(" &H682E6FF3")

HEXDEC(" &H748F82EE")
HEXDEC(" &H78A5636F")
HEXDEC(" &H84C87814")

= HEXDEC(" &H8CC70208")
= HEXDEC(" &H90BEFFFA")
= HEXDEC(" &HA4506CEB")

HEXDEC(" &HBEF9A3F7")
HEXDEC(" &HC67178F2")

FUNCTI ON SHA256. Eval uat e$(sMessage$)

Di m SHA256. W 64)

"Initialize the SHA256 obj ect
CALL SHA256.Initialize

"Init
hO =
hl =
h2 =
h3 =
h4 =
hS =
hé =
h7 =

"Convert the string into an
"array of nuneric values (32-bit)

Cal |

" Eval uat e t he SHA256 di gest
i = 0 To (SHA256. Dat aCount

For i

a
b
c
d

i al hash val ues

HEXDEC(" &H6A09E667")
HEXDEC(" &HBB67AE85")
HEXDEC(" &H3C6EF372")
HEXDEC(" &HA54FF53A")
HEXDEC(" &H510E527F")
HEXDEC(" &H9B05688C")
HEXDEC(" &H1F83D9AB")
HEXDEC(" &H5BEOCD19")

SHA256. Convert ToWwr dArray sMessage$

= hO
= hl
= h2
h3

1) Step 16

page 5/8

Liberty BASIC Community Wiki

e = hd
f = h5
g = h6
h = h7
For | = 0 To 63

If j < 16 Then
SHA256. W j) = SHA256.Data(j + i)
El se
SHA256. W) = SHA256. AddUnsi gned(SHA256.
AddUnsi gned(SHA256. AddUnsi gned(SHA256. Garmal(SHA256. W - 2)), _
SHA256. Wj - 7)), SHA256. GammaO(SHA256. Wj - 15))
), SHA256. Wj - 16))
End I f
t1 = SHA256. AddUnsi gned(SHA256. AddUnsi gned(SHA256.
AddUnsi gned(SHA256. AddUnsi gned(h, SHA256. Si gmal(e)), _
SHA256. Ch(e, f, g)), SHA256.K(j)), SHA256.Wj))
t2 = SHA256. AddUnsi gned(SHA256. Si gnma0O(a), SHA256. Maj (

a, b, c))
h =g
g="f
f =e
e = SHA256. AddUnsi gned(d, t1)
d=c
c=b
b =a
a = SHA256. AddUnsi gned(t1, t2)
Next
hO = SHA256. AddUnsi gned(a, hO)
hl = SHA256. AddUnsi gned(b, h1l)
h2 = SHA256. AddUnsi gned(c, h2)
h3 = SHA256. AddUnsi gned(d, h3)
h4 = SHA256. AddUnsi gned(e, h4)
h5 = SHA256. AddUnsi gned(f, h5)
h6é = SHA256. AddUnsi gned(g, h6)
h7 = SHA256. AddUnsi gned(h, h7)
Next

"Qut put the 256-bit digest

SHA256. Eval uat e$ = Lower $(Ri ght $("00000000" + DecHex$(h0O), 8) +
Ri ght $("00000000" + DecHex$(hl), 8) +
Ri ght $("00000000" DecHex$(h2), 8)
Ri ght $("00000000" + DecHex$(h3), 8)
Ri ght $("00000000" DecHex$(h4), 8)
Ri ght $("00000000" + DecHex$(h5), 8)
Ri ght $("00000000" DecHex$(h6), 8)
Ri ght $("00000000" + DecHex$(h7), 8))

+ + + + + + +
+ + + + +

page 6/ 8

Liberty BASIC Community Wiki

END FUNCTI ON
FUNCTI ON SHA256. Bi t Not (X)

SHA256. BitNot = 0
For a = 0 To 31
IF ((X And (2 ~ a)) = 0) THEN
SHA256. Bi t Not = SHA256.BitNot O (2 ™ a)
END | F
Next

END FUNCTI ON

FUNCTI ON SHA256. Ch(X, Y, z)
SHA256.Ch = ((X And Y) Xor ((SHA256.BitNot(X)) And z))
END FUNCTI ON

FUNCTI ON SHA256. Maj (X, Y, 2)
SHA256. Maj = ((X And Y) Xor (X And z) Xor (Y And z))
END FUNCTI ON

FUNCTI ON SHA256. S(X, n)
SHA256. S = (SHA256. RShift(X, n)) O SHA256.LShift(X, (32 - n))
END FUNCTI ON

FUNCTI ON SHA256. R(X, n)
SHA256. R = SHA256. RShift (X, n) 'Clnt(n And m OnBits(4)))
END FUNCTI ON

FUNCTI ON SHA256. Si gma0(X)

SHA256. Si gma0 = (SHA256. S(X, 2) Xor SHA256.S(X, 13) Xor
SHA256. S(X, 22))
END FUNCTI ON

FUNCTI ON SHA256. Si gmal(X)

SHA256. Si gmal = (SHA256. S(X, 6) Xor SHA256.S(X, 11) Xor
SHA256. S(X, 25))
END FUNCTI ON

FUNCTI ON SHA256. Ganmma0(X)

SHA256. Ganma0 = (SHA256. S(X, 7) Xor SHA256.S(X, 18) Xor
SHA256. R(X, 3))
END FUNCTI ON

FUNCTI ON SHA256. Ganmal(X)

page 7/ 8

Liberty BASIC Community Wiki

SHA256. Gammal = (SHA256. S(X, 17) Xor SHA256. S(X, 19) Xor

SHA256. R(X, 10))
END FUNCTI ON

FUNCTI ON SHA256. AddUnsi gned(I| X, 1Y)

SHA256. AddUnsi gned = (I X + 1Y) AND HEXDEC(" &HFFFFFFFF")

END FUNCTI ON
FUNCTI ON SHA256. RShi ft (| Val ue, i ShiftBits)

For a =1 To iShiftBits
| Val ue = | Val ue AND HEXDEC(" &HFFFFFFFE")

| Val ue = Int(lValue / 2)
| Val ue = | Val ue And HEXDEC(" &HFFFFFFFF")
Next

SHA256. RShi ft = | Val ue And HEXDEC(" &HFFFFFFFF")
End Function
FUNCTI ON SHA256. Lshi ft (1 Val ue, i ShiftBits)

For a =1 To iShiftBits

| Val ue = | Val ue AND HEXDEC(" &H7FFFFFFF")

| Value = | vValue * 2

| Val ue = | Val ue And HEXDEC(" &HFFFFFFFF")
Next

SHA256. LShi ft = | Val ue And HEXDEC(" &HFFFFFFFF")

End Functi on

page 8/ 8

http://www.tcpdf.org

	sha256

