
Liberty BASIC Community Wiki

-
 fqvarfort

Code to calculate the SHA256 (Secure Hash Algorithm) of a string.

 '==
 '
 ' Secure Hash Algorithm (SHA256)
 '
 ' This is a Liberty Basic implementation of
 ' of the SHA256 one-way encryption algorithm
 '
 ' Ported to Liberty Basic by fmtSoftware at
 ' http://www.fmtsoftware.com/
 '
 ' License:
 ' http://creativecommons.org/licenses/by/3.0/
 '
 ' You may use it in any application, including
 ' commercial products. A credit to the author
 ' and a link to the website must be included
 ' in your program's documentation or readme
 ' file, and in any source code released to
 ' the public.
 '
 ' http://www.fmtsoftware.com
 '
 '==
 ' Version 0.1.0
 '==

 'Global data for SHA256
 DIM SHA256.Data(0)
 GLOBAL SHA256.DataCount

 'Print a test SHA256 value
 Print SHA256.Evaluate$("test")

SUB SHA256.ConvertToWordArray sMessage$

 MODULUS.BITS = 512
 CONGRUENT.BITS = 448
 BITS.TO.A.BYTE = 8
 BYTES.TO.A.WORD = 4

 page 1 / 8

https://www.wikispaces.com/user/view/fqvarfort
https://www.wikispaces.com/user/view/fqvarfort

Liberty BASIC Community Wiki

 BITS.TO.A.WORD = BYTES.TO.A.WORD * BITS.TO.A.BYTE

 'Get the length of the source string
 lMessageLength = Len(sMessage$)

'Get padded number of words. Message needs to be congruent to 448 bits
,

'modulo 512 bits. If it is exactly congruent to 448 bits, modulo 512 b
its
 'it must still have another 512 bits added. 512 bits = 64 bytes

'(or 16 * 4 byte words), 448 bits = 56 bytes. This means lNumberOfWord
s must
 'be a multiple of 16 (i.e. 16 * 4 (bytes) * 8 (bits))
 lNumberOfWords = (Int((lMessageLength + _
 Int((MODULUS.BITS - CONGRUENT.BITS) / BITS.TO.A.BYTE)) / _
 Int(MODULUS.BITS / BITS.TO.A.BYTE)) + 1) * _
 Int(MODULUS.BITS / BITS.TO.A.WORD)

 'Resize the word array and store the number of
 'elements in the word array for later use
 ReDim SHA256.Data(lNumberOfWords - 1)
 SHA256.DataCount = lNumberOfWords

'Combine each block of 4 bytes (ascii code of character) into one long
 'value and store in the message. The high-
order (most significant) bit of
 'each byte is listed first. However,
 lByteCount = 0
 lBytePosition = 0
 Do Until lByteCount >= lMessageLength
 ' Each word is 4 bytes
 lWordCount = Int(lByteCount / BYTES.TO.A.WORD)
 lBytePosition = (3 - (lByteCount Mod BYTES.TO.A.WORD)) *
 BITS.TO.A.BYTE

' NOTE: This is where we are using just the first byte of each unicode

' character, you may want to make the change here, or to the SHA256 me
thod
 ' so it accepts a byte array.
 lByte = Asc(Mid$(sMessage$, lByteCount + 1, 1))

 page 2 / 8

Liberty BASIC Community Wiki

 SHA256.Data(lWordCount) = SHA256.Data(lWordCount) Or
 SHA256.LShift(lByte, lBytePosition)
 lByteCount = lByteCount + 1
 Loop

'Terminate according to SHA-256 rules with a 1 bit, zeros and the leng
th in
 'bits stored in the last two words
 lWordCount = Int(lByteCount / BYTES.TO.A.WORD)
 lBytePosition = (3 - (lByteCount Mod BYTES.TO.A.WORD)) * BITS.TO.
A.BYTE

'Add a terminating 1 bit, all the rest of the bits to the end of the
 'word array will default to zero
 SHA256.Data(lWordCount) = SHA256.Data(lWordCount) Or _
 SHA256.LShift(HEXDEC("&H80"), lBytePosition)

'We put the length of the message in bits into the last two words, to
get

'the length in bits we need to multiply by 8 (or left shift 3). This l
eft

'shifted value is put in the last word. Any bits shifted off the left
edge

'need to be put in the penultimate word, we can work out which bits by
 shifting
 'right the length by 29 bits.
 SHA256.Data(lNumberOfWords - 1) = SHA256.LShift(lMessageLength, 3)
 SHA256.Data(lNumberOfWords - 2) = SHA256.RShift(
lMessageLength, 29)

End Sub

SUB SHA256.Initialize

 DIM SHA256.K(64)

 'Initialize the K array
 SHA256.K(0) = HEXDEC("&H428A2F98")
 SHA256.K(1) = HEXDEC("&H71374491")

 page 3 / 8

Liberty BASIC Community Wiki

 SHA256.K(2) = HEXDEC("&HB5C0FBCF")
 SHA256.K(3) = HEXDEC("&HE9B5DBA5")
 SHA256.K(4) = HEXDEC("&H3956C25B")
 SHA256.K(5) = HEXDEC("&H59F111F1")
 SHA256.K(6) = HEXDEC("&H923F82A4")
 SHA256.K(7) = HEXDEC("&HAB1C5ED5")
 SHA256.K(8) = HEXDEC("&HD807AA98")
 SHA256.K(9) = HEXDEC("&H12835B01")
 SHA256.K(10) = HEXDEC("&H243185BE")
 SHA256.K(11) = HEXDEC("&H550C7DC3")
 SHA256.K(12) = HEXDEC("&H72BE5D74")
 SHA256.K(13) = HEXDEC("&H80DEB1FE")
 SHA256.K(14) = HEXDEC("&H9BDC06A7")
 SHA256.K(15) = HEXDEC("&HC19BF174")
 SHA256.K(16) = HEXDEC("&HE49B69C1")
 SHA256.K(17) = HEXDEC("&HEFBE4786")
 SHA256.K(18) = HEXDEC("&HFC19DC6")
 SHA256.K(19) = HEXDEC("&H240CA1CC")
 SHA256.K(20) = HEXDEC("&H2DE92C6F")
 SHA256.K(21) = HEXDEC("&H4A7484AA")
 SHA256.K(22) = HEXDEC("&H5CB0A9DC")
 SHA256.K(23) = HEXDEC("&H76F988DA")
 SHA256.K(24) = HEXDEC("&H983E5152")
 SHA256.K(25) = HEXDEC("&HA831C66D")
 SHA256.K(26) = HEXDEC("&HB00327C8")
 SHA256.K(27) = HEXDEC("&HBF597FC7")
 SHA256.K(28) = HEXDEC("&HC6E00BF3")
 SHA256.K(29) = HEXDEC("&HD5A79147")
 SHA256.K(30) = HEXDEC("&H6CA6351")
 SHA256.K(31) = HEXDEC("&H14292967")
 SHA256.K(32) = HEXDEC("&H27B70A85")
 SHA256.K(33) = HEXDEC("&H2E1B2138")
 SHA256.K(34) = HEXDEC("&H4D2C6DFC")
 SHA256.K(35) = HEXDEC("&H53380D13")
 SHA256.K(36) = HEXDEC("&H650A7354")
 SHA256.K(37) = HEXDEC("&H766A0ABB")
 SHA256.K(38) = HEXDEC("&H81C2C92E")
 SHA256.K(39) = HEXDEC("&H92722C85")
 SHA256.K(40) = HEXDEC("&HA2BFE8A1")
 SHA256.K(41) = HEXDEC("&HA81A664B")
 SHA256.K(42) = HEXDEC("&HC24B8B70")
 SHA256.K(43) = HEXDEC("&HC76C51A3")
 SHA256.K(44) = HEXDEC("&HD192E819")
 SHA256.K(45) = HEXDEC("&HD6990624")
 SHA256.K(46) = HEXDEC("&HF40E3585")
 SHA256.K(47) = HEXDEC("&H106AA070")

 page 4 / 8

Liberty BASIC Community Wiki

 SHA256.K(48) = HEXDEC("&H19A4C116")
 SHA256.K(49) = HEXDEC("&H1E376C08")
 SHA256.K(50) = HEXDEC("&H2748774C")
 SHA256.K(51) = HEXDEC("&H34B0BCB5")
 SHA256.K(52) = HEXDEC("&H391C0CB3")
 SHA256.K(53) = HEXDEC("&H4ED8AA4A")
 SHA256.K(54) = HEXDEC("&H5B9CCA4F")
 SHA256.K(55) = HEXDEC("&H682E6FF3")
 SHA256.K(56) = HEXDEC("&H748F82EE")
 SHA256.K(57) = HEXDEC("&H78A5636F")
 SHA256.K(58) = HEXDEC("&H84C87814")
 SHA256.K(59) = HEXDEC("&H8CC70208")
 SHA256.K(60) = HEXDEC("&H90BEFFFA")
 SHA256.K(61) = HEXDEC("&HA4506CEB")
 SHA256.K(62) = HEXDEC("&HBEF9A3F7")
 SHA256.K(63) = HEXDEC("&HC67178F2")

END SUB

FUNCTION SHA256.Evaluate$(sMessage$)

 Dim SHA256.W(64)

 'Initialize the SHA256 object
 CALL SHA256.Initialize

 'Initial hash values
 h0 = HEXDEC("&H6A09E667")
 h1 = HEXDEC("&HBB67AE85")
 h2 = HEXDEC("&H3C6EF372")
 h3 = HEXDEC("&HA54FF53A")
 h4 = HEXDEC("&H510E527F")
 h5 = HEXDEC("&H9B05688C")
 h6 = HEXDEC("&H1F83D9AB")
 h7 = HEXDEC("&H5BE0CD19")

 'Convert the string into an
 'array of numeric values (32-bit)
 Call SHA256.ConvertToWordArray sMessage$

 'Evaluate the SHA256 digest
 For i = 0 To (SHA256.DataCount - 1) Step 16
 a = h0
 b = h1
 c = h2
 d = h3

 page 5 / 8

Liberty BASIC Community Wiki

 e = h4
 f = h5
 g = h6
 h = h7
 For j = 0 To 63
 If j < 16 Then
 SHA256.W(j) = SHA256.Data(j + i)
 Else
 SHA256.W(j) = SHA256.AddUnsigned(SHA256.
AddUnsigned(SHA256.AddUnsigned(SHA256.Gamma1(SHA256.W(j - 2)), _
 SHA256.W(j - 7)), SHA256.Gamma0(SHA256.W(j - 15))
), SHA256.W(j - 16))
 End If
 t1 = SHA256.AddUnsigned(SHA256.AddUnsigned(SHA256.
AddUnsigned(SHA256.AddUnsigned(h, SHA256.Sigma1(e)), _
 SHA256.Ch(e, f, g)), SHA256.K(j)), SHA256.W(j))
 t2 = SHA256.AddUnsigned(SHA256.Sigma0(a), SHA256.Maj(
a, b, c))
 h = g
 g = f
 f = e
 e = SHA256.AddUnsigned(d, t1)
 d = c
 c = b
 b = a
 a = SHA256.AddUnsigned(t1, t2)
 Next
 h0 = SHA256.AddUnsigned(a, h0)
 h1 = SHA256.AddUnsigned(b, h1)
 h2 = SHA256.AddUnsigned(c, h2)
 h3 = SHA256.AddUnsigned(d, h3)
 h4 = SHA256.AddUnsigned(e, h4)
 h5 = SHA256.AddUnsigned(f, h5)
 h6 = SHA256.AddUnsigned(g, h6)
 h7 = SHA256.AddUnsigned(h, h7)
 Next

 'Output the 256-bit digest
 SHA256.Evaluate$ = Lower$(Right$("00000000" + DecHex$(h0), 8) + _
 Right$("00000000" + DecHex$(h1), 8) + _
 Right$("00000000" + DecHex$(h2), 8) + _
 Right$("00000000" + DecHex$(h3), 8) + _
 Right$("00000000" + DecHex$(h4), 8) + _
 Right$("00000000" + DecHex$(h5), 8) + _
 Right$("00000000" + DecHex$(h6), 8) + _
 Right$("00000000" + DecHex$(h7), 8))

 page 6 / 8

Liberty BASIC Community Wiki

END FUNCTION

FUNCTION SHA256.BitNot(X)

 SHA256.BitNot = 0
 For a = 0 To 31
 IF ((X And (2 ^ a)) = 0) THEN
 SHA256.BitNot = SHA256.BitNot Or (2 ^ a)
 END IF
 Next

END FUNCTION

FUNCTION SHA256.Ch(X, Y, z)
 SHA256.Ch = ((X And Y) Xor ((SHA256.BitNot(X)) And z))
END FUNCTION

FUNCTION SHA256.Maj(X, Y, z)
 SHA256.Maj = ((X And Y) Xor (X And z) Xor (Y And z))
END FUNCTION

FUNCTION SHA256.S(X, n)
 SHA256.S = (SHA256.RShift(X, n)) Or SHA256.LShift(X, (32 - n))
END FUNCTION

FUNCTION SHA256.R(X, n)
 SHA256.R = SHA256.RShift(X, n) 'CInt(n And mlOnBits(4)))
END FUNCTION

FUNCTION SHA256.Sigma0(X)
 SHA256.Sigma0 = (SHA256.S(X, 2) Xor SHA256.S(X, 13) Xor
 SHA256.S(X, 22))
END FUNCTION

FUNCTION SHA256.Sigma1(X)
 SHA256.Sigma1 = (SHA256.S(X, 6) Xor SHA256.S(X, 11) Xor
 SHA256.S(X, 25))
END FUNCTION

FUNCTION SHA256.Gamma0(X)
 SHA256.Gamma0 = (SHA256.S(X, 7) Xor SHA256.S(X, 18) Xor
 SHA256.R(X, 3))
END FUNCTION

FUNCTION SHA256.Gamma1(X)

 page 7 / 8

Liberty BASIC Community Wiki

 SHA256.Gamma1 = (SHA256.S(X, 17) Xor SHA256.S(X, 19) Xor
 SHA256.R(X, 10))
END FUNCTION

FUNCTION SHA256.AddUnsigned(lX, lY)
 SHA256.AddUnsigned = (lX + lY) AND HEXDEC("&HFFFFFFFF")
END FUNCTION

FUNCTION SHA256.RShift(lValue, iShiftBits)

 For a = 1 To iShiftBits
 lValue = lValue AND HEXDEC("&HFFFFFFFE")
 lValue = Int(lValue / 2)
 lValue = lValue And HEXDEC("&HFFFFFFFF")
 Next
 SHA256.RShift = lValue And HEXDEC("&HFFFFFFFF")

End Function

FUNCTION SHA256.LShift(lValue, iShiftBits)

 For a = 1 To iShiftBits
 lValue = lValue AND HEXDEC("&H7FFFFFFF")
 lValue = lValue * 2
 lValue = lValue And HEXDEC("&HFFFFFFFF")
 Next
 SHA256.LShift = lValue And HEXDEC("&HFFFFFFFF")

End Function

Powered by TCPDF (www.tcpdf.org)

 page 8 / 8

http://www.tcpdf.org

	sha256

