Liberty BASIC Community Wiki

gx Graphics Library Center

The gx Graphics Library, or gxGL, is a 2D memory drawing library based off of the Win32 GDI libraries.

Table of Contents

gx Graphics Library Center user:lbjoseph
Understanding gxGL

Getting gxGL

Setting Up gxGL

Closing gxGL

Rendering Graphics

Graphics Persistance

Colors

Graphics Concepts

The Pen

The Brush

A Basic Example

Graphics Commands

CLS

FILL color

FILLAT xy

PENCOLOR color

PENWIDTH width

PENSTYLE style

page 1/ 18

https://www.wikispaces.com/user/view/lbjoseph
https://www.wikispaces.com/user/view/lbjoseph

Liberty BASIC Community Wiki

FILLCOLOR color

STYLECOLOR color

BRUSHSTYLE style

BLIT bitmap x y

BLITFIELD bitmap srcX srcY srcW srcH destX destY destW destH
BLITKEY color | none

BLITSTYLE style

BLITANGLE angle

BLITFLIP none | horizontal | vertical | both

BLITORIGIN x y | default

BOX x y width height

ROUNDBOX x y width height [roundRadius] [yRoundRadius
ELLIPSE x y width height

LINE x1 y1 x2 y2

POLYGON plx ply p2x p2y p3x p3y ...

POLYGONMODE alternate | winding

TEXTAT x y

TEXTCOLOR color

FONT face_name sizept [bold] [italic] [strike] [underline]
GETBMP bitmapName x y width height

gxGL Services

Bitmap Dimensions

Font Height

page 2/ 18

Liberty BASIC Community Wiki

Getting the Most Out of gxGL.

Drawing Sprites

The functionality offered by gxGL allows you to draw in memory almost exactly as you would in a Liberty
BASIC graphicbox. The commands are slightly different, but allow for more functionality.

Understanding gxGL

gxGL is a library of code. This means you don't have to understand how gxGL works, only how to use it.
The subroutines and functions that make gxGL are very easy to call and interact with. gxGL does all of its
drawing on a bitmap stored in memory. This makes it very easy to show the entire bitmap at once on a
window or graphicbox.

gxGL makes it very easy to create smooth, flicker free animations. By clearing, redrawing, and displaying
the memory bitmap many times a second, it is easy to construct frames of animation in memory and

display them on your window or graphicbox control. This avoids the traditional flicker with Liberty
BASIC graphics, and is technically the same method Liberty BASIC uses to render sprites.

Getting gxGL

Get the Current gxGL Code.

Setting Up gxGL

It's easy to get started using gxGL. All you need to do is tell gxGL how big of a canvas you want to draw
on.

Call gx.InitMenoryDrawi ng CanvasW dt h, CanvasHei ght

This tells gxGL to allocate the properly sized surface available so you can begin drawing on it.

Closing gxGL

When your program ends, you need to tell gxGL to clean up after itself. This too is very simple:

page 3/ 18

/gx%20Graphics%20Library

Liberty BASIC Community Wiki

Cal | gx. Finish

Once you do this, gxGL deletes all the memory drawings and closes the handles to the resources it needs.

Rendering Graphics

It's easy to display the graphics that you've drawn with gxGL on the screen.

Call gx.Render To w ndow, dest X, dest Y, srcAr eaX, srcAreay,
srcAreaW sr cAr eaH

The first argument window is the handle to a window or graphicbox. This can be obtained like so:

wi ndow = HWAd(#w nHandl e. gr aphi cboxHandl e)
For more information on window handles, see the Liberty BASIC help file.

The second and third arguments (destX,destY) specify the (x,y) location to render the memory drawing at
on window.

The fourth and fifth arguments (srcAreaX,srcAreaY) specify the (x,y) location of the upper left hand
corner of the area in the memory bitmap you would like to render.

The final two arguments (srcAreaW srcAreaH) specify the width and height of the area in the memory
bitmap you would like to render.

If rendering the image isn't enough, you can stretch the in-memory drawing to a particular window or
graphics box with the following code:

Call gx.StretchTo w ndow, dest X, dest Y, dest W dest H,
SrcAreaX, srcAreay, srcAreaW sr cAr eaH

Where destW and destH are the size you would like the image to be stretched to. The rest of the
parameters are identical to the gx.RenderTo command.

Graphics Persistance

page 4/ 18

Liberty BASIC Community Wiki

Once a memory drawing is shown on a graphics window or graphicbox, it can be "flushed" so it will stay
shown. This can easily be accomplished by using the native Liberty BASIC command sequence "GETBMP
bmpname x y width height; drawbmp bmpname 0 0; flush" - just fill in your own graphics dimensions. For
more information, please see Flushing Sprite Graphics (applies to gxGL rendering).

Colors

Colors in gxGL are exactly like the colors in Liberty BASIC commands. You can use one of the 16 colors
recognized by LB, or any color in a "R G B" string format. You can even use the "buttonface" color.

yellow
brown
red
darkred
pink
darkpink
hlue
darkblue

areen
I clarkgreen
cyan

Graphics Concepts

Commands are issued to gxGL with a simple subroutine call:

Call gx.Draw "cls; fill blue"

Commands are separated by a semi-colon, and you can put as many commands in a string as you like.
Commands are case-insensitive, which means it doesn't matter if they're uppercase or lowercase.

The Pen

The "pen" in gxGL is used to draw the outlines of shapes. The pen has three properties: width, style, and
color.

The Brush

The "brush" in gxGL is used to create filled shapes. The brush is very flexible and can fill shapes in
various patterns, much like how the pen can make dashed outlines. The brush is affected by the
FILLCOLOR, BRUSHSTYLE, and STYLECOLOR.

page 5/ 18

http://www.libertybasicuniversity.com/lb4help/Flushing_Sprite_Graphics.htm

Liberty BASIC Community Wiki

A Basic Example

Below is a short example that demonstrates a few basic pen techniques. It sets the BRUSHSTYLE to

none so that shapes are not filled.

[Denpl]
NoMai nW n

W ndowWN dt h = 640

W ndowHei ght = 480

Upper Left X = I nt ((Di spl ayW dt h- W ndoww dt h) / 2)
UpperLeftY = Int ((D spl ayHei ght - W ndowHei ght)/ 2)

Open "gx Graphics Denmb 1 - Pens" For Graphics_NF_NSB As #w n

#wWn "TrapCose [Quit]"
#wn "CLS; Down; Fill Wite; Flush;"

" Must be called first. You can set the dinensions to be as big as you

l'i ke.

"1 won't need to draw anythi ng bigger than the size of the wi ndow, ho

wever .
Cal | gx.InitMenoryDraw ng 640, 480

centerX = Int(640/2) : centerY = Int(480/2)
st = 4

Call gx.Draw "cls; fill 0 O 0"

" Let's draw sonme red and blue circle outlines:

Call gx. Draw
"penstyl e dot; penwidth 1; pencol or blue; stylecolor red;
one;"

brushstyle n

For i =1 To 100 Step st
a = i*st
Call gx.Draw "ellipse ";centerX-a;" ";centerY-a;" ";a*2;" "
;a*2
Next i
" Now, let's show the graphics on screen:
' (destination loc.) (source area start)

(source area wi dth and hei ght)

page 6/ 18

Liberty BASIC Community Wiki

Cal |l gx.Render To hWwhd(#w n), 0, 0,
0, 0, 640, 480

Wi t
[Quit]
Cal | gx. Finish

Cl ose #w n
End

Graphics Commands

The following section provides reference for all of the graphics commands present in gxGL.

CLS

The CLS command clears the drawing and fills it white.

FILL color

The FILL command fills the entire memory drawing with the specified color.

FILLAT xy

The FILLAT command fills the surrounding area of (x,y) with the FILLCOLOR until it reaches a color
that wasn't the color of the pixel at (x,y).
Think of this is as the paint dipper in your favorite raster graphics application.

PENCOLOR color

The PENCOLOR command sets the color of the pen (for outlines) to be the specified color. As with all
colors, it can be a single Liberty BASIC color name, or 'r g b" format.
For example: "pencolor blue; pencolor 42 100 232"

PENWIDTH width

The PENWIDTH command sets the width of the pen (in pixels) to be the following number. For example
"penwidth 4" will give the pen a thickness of 4 px.

page 7/ 18

Liberty BASIC Community Wiki

PENSTYLE style

The pen style specifies what kind of pen to use. The following table lists the styles available:

normal The default setting. This is a solid pen.

solid Same as normal.

none The pen is invisible. This allows filled shapes to be

drawn without an outline.

insideframe This is a solid pen that stays within the boundaries of
the shape drawn.

dash This is a dashed pen.

dot This is a dotted pen.

dashdot This pen follows a dash-dot pattern.
dashdotdot This pen follows a dash-dot-dot pattern.

The following pen styles only work when the PENWIDTH is 1 px: dash, dot, dashdot, and dashdotdot.
The pen style can be used to make decorative pens, solid pens, or make the pen completely invisible.

"o

For example "penstyle dashdot", 'penstyle insideframe", and "penstyle none" give the pen the respective
properties.

FILLCOLOR color

The FILLCOLOR command sets the color of the brush to the specified color. The brush color is the
color that shapes are filled.
This is also the color that is used with the FILLAT command.

For example, "fillcolor 42 42 96" or "fillcolor blue" will change the fill color to the given colors.

STYLECOLOR color

The STYLECOLOR command sets the style color to be the specified color. The style color is different
from the FILLCOLOR and the PENCOLOR. It is the secondary color that is used on dotted pen styles

page 8/ 18

Liberty BASIC Community Wiki

and pattern brushes. The style color can be optionally turned off to make dotted pens and pattern brushes
appear to be transparent. This is done by simply sending a "stylecolor none" statement.

BRUSHSTYLE style

The BRUSHSTYLE command changes the style of the brush to be specified the style. The brush can even

be made invisible by setting it to the "none" style. Brush styles are useful for creating pattern brushes, solid

brushes, or making the brush invisible. Below is a list of the valid brush styles.

normal This is the default style. The brush fills with the solid
color specified with the FILLCOLOR command.

solid Same as normal.

none The brush is invisible. Use this style to draw shapes
with only an outline.

vertical The brush fills with a vertical line pattern.
horizontal The brush fills with a horizontal line pattern.

Cross The brush fills with a cross pattern.

45 The brush fills with a 45° diagonal-cross line pattern.
45down The brush fills with a 45° line downward pattern.
45up The brush fills with a 45° line upward pattern.

For example, "brushstyle 45up", "brushstyle none", and "brushstyle solid" set the respective style for the
brush.

BLIT bitmap x y

This command blits the specified bitmap (that has been loaded via LOADBMP or other means) onto the
memory drawing. This is very similar to the Liberty BASIC graphicbox command DRAWBMP.

The BLIT command is influenced by the BLITSTYLE and BLITKEY properties.

BLITFIELD bitmap srcX srcY srcW srcH destX destY destW destH

The BLITFIELD command can be used to draw a stretched bitmap onto the memory drawing, or draw

page 9/ 18

http://en.wikipedia.org/wiki/Bit_blit

Liberty BASIC Community Wiki

(and optionally stretch) part of a bitmap onto the memory drawing. =< _emsomre =7 yewer e

The srcX and srcY parameters indicate where the top left corner of the area in the bitmap you want to
draw begins.
The srcW and srcH are the width and height of the area in the bitmap you want to draw.

The destX and destY parameters are the point to render the specified area in the bitmap onto the memory
drawing.

The destW and destH parameters are the width and height that the specified area in the bitmap appears on
the memory drawing. If these are larger or smaller than srcW and srcH, BLITFIELD will stretch the
bitmap to fit the size. This allows for bitmap scaling.

BLITFIELD is also influenced by the BLITSTYLE and BLITKEY properties.

Below is an example of drawing a box in memory, rendering it, getting the rendered bitmap, and drawing
that bitmap stretched.

[Denp3]
NoMai nW n

W ndowW dt h = 640

W ndowHei ght = 480

Upper Left X = I nt ((Di spl ayW dt h- W ndowW dt h) / 2)
UpperLeftY = Int((D spl ayHei ght - W ndowHei ght)/ 2)

Open
"gx Graphics Deno 3 - Blitting Bitmaps" For G aphics_NF_NSB As #w n

#w n "TrapC ose [Quit]"
#wn "CLS; Down: Fill Wiite; Flush"

wdth = 640 : height = 480
Call gx.InitMenoryDraw ng wi dth, height

Call gx. Draw
"cls; fillcolor pink; brushstyle horizontal; stylecolor darkblue; pens
tyl e none"

Cal |l gx.Draw "roundbox 10 10 100 100 20"

" Now get that rendered rounded box as a bitmp:

page 10/ 18

Liberty BASIC Community Wiki

Call gx.Draw "Get BMP box 8 8 104 104"

" Now stretch the box bitmap and render it:

Call gx.Draw "blitstyle normal; blitkey none"

Call gx.Draw "blitfield box O O 104 104 2 2 308 408"
Call gx.Render To hwhd(#wi n), 0,0, 0,0, w dth, hei ght

Wai t

[Quit]
Cal | gx. Finish
Cl ose #w n

End

BLITKEY color | none

The BLITKEY command specifies a transparent color for drawing bitmaps. This color is not shown when
the bitmap is drawn. This allows for using bitmaps as icons or game graphics. Transparency can be easily
disregarded by sending a "blitkey none" statement.

For example, a "blitkey blue" or "blitkey 255 255 255" sets the transparent color to be the respective color
given. When blitkey is set to a color, the BLITSTYLE is ignored when drawing images with a transparent
color.

BLITSTYLE style

The BLITSTYLE command is an advanced feature that specifies a raster operation mode for drawing

bitmaps onto the memory drawing. The style can be one of the following:

normal Copies the source rectangle directly to the
destination rectangle. This is the default mode.

copy Same as normal.

and Combines the colors of the source and destination
rectangles by using the Boolean AND operator.

or Combines the colors of the source and destination
rectangles by using the Boolean OR operator.

xor Combines the colors of the source and destination
rectangles by using the Boolean XOR operator.

invert Copies the inverted source rectangle to the
destination.

page 11/18

Liberty BASIC Community Wiki

orinvert Combines the colors of the source and destination
rectangles by using the Boolean OR operator and
then inverts the resultant color.

invertormerge Merges the colors of the inverted source rectangle
with the colors of the destination rectangle by using
the Boolean OR operator.

invertfinal Inverts the destination rectangle.

invertfinaland Combines the inverted colors of the destination
rectangle with the colors of the source rectangle by
using the Boolean AND operator.

For example, "blitstyle and", "blitstyle invert", and "blitstyle normal” change the blitstyle to the specified
style.

BLITANGLE angle

The BLITANGLE command specifies the angle at which bitmaps rendered with BLIT and BLITFIELD
will be rendered at. The origin point (the point the bitmap is rotated around) is specified with
BLITORIGIN.

For example, "blitangle 45" will set the blitting angle to be 45°.

BLITFLIP none | horizontal | vertical | both

The BLITFLIP command mirrors (or flips) an image in the specified direction. Unfortunately, this does
not work when using a BLITKEY for transparent blitting, due to limitations in Windows itself.

none Draws an image normally.

horizontal Mirrors the image along the x-axis.
vertical Mirrors the image along the y-axis.
both Mirrors the image along both axes.

BLITORIGIN x y | default

The BLITORIGIN command specifies the rotation origin for blitting bitmaps. By default, the origin is

page 12/ 18

Liberty BASIC Community Wiki

assumed to be the middle of the bitmap. For example, "blitorigin 50 50" will tell gxGL to render the bitmap
rotated by the amount specified by BLITANGLE around the point (50,50). Origin points are relative to
the bitmap. If you blit a bitmap at (x,y) and specify an origin of (50,75), the bitmap will be drawn rotated
around (x+50,y+75).

Specifying "blitorigin default” will cause gxGL to revert back to centered origins.

[Denp4]
NoMai nW n

W ndowW dt h = 640

W ndowHei ght = 480

UpperLeft X = Int ((D spl ayW dt h- W ndowW dt h) / 2)
UpperLeftY = Int((D spl ayHei ght - W ndowHei ght)/ 2)

Open
gx Graphics Denb 4 - Rotating Bitmaps" For G aphics_NF_NSB As #w n

#wn "TrapC ose [Quit]"
#win "CLS;, Down; Fill White; Flush"

width = 640 : height = 480
Call gx.InitMnoryDrawi ng w dth, hei ght

Call gx.Draw
"cls; fillcolor green; brushstyle 45up; stylecol or darkgreen; penstyle
none"
Call gx.Draw "roundbox 4 4 100 100 20"
Call gx.Draw "GetBWMP box 2 2 106 106"

[Rot at e]
Timer O
angle = angle + 1
| f angle >= 360 Then angle = 0
Call gx.Draw
cl
S; b
litstyle normal; blitkey none; blitorigin default; blitangle
Call gx.Draw "blitfield box O 0 104 104 100 100 204 204"
Call gx.Render To hwhd(#wi n), 0,0, 0,0, w dth, height
Ti mer 40, [Rotate]
Wi t

;angl e

page 13/ 18

Liberty BASIC Community Wiki

[Quit]
Cal | gx. Finish
Cl ose #w n

End

BOX x y width height

This draws a rectangle with the current pen and brush at (x,y) with the respective width and height. The
rectangle is outlined with the current pen, and filled with the current brush. Both the pen and the brush can
be set to be invisible to create only an outline, or just a filled shape.

For example, "box 2 2 100 100" creates a 100x100 rectangle (square) at (2,2).

ROUNDBOX x y width height [roundRadius] [yRoundRadius]

This draws a rounded rectangle with the current pen and brush at (x,y) with the respective width and
height. The rounded rectangle is outlined with the current pen, and filled with the current brush.

The optional roundRadius and yRoundRadius parameters specify how much to round the edges of the
box. If yRoundRadius is omitted, it is assumed to be roundRadius. If both are omitted, the rounding
radius is assumed to be 10 px.

For example, "roundbox 2 2 100 100 20" creates a 100x100 rectangle with 20 px corner rounding at (2,2)
on the memory drawing.

ELLIPSE x y width height

This draws an ellipse at (x,y) with the respective width and height. The ellipse is outlined with the current
pen, and filled with the current brush.

For example, "ellipse 10 10 150 200" draws an ellipse at (10,10) with a width of 150 px, and a height of
200 px.

LINE x1 y1 x2 y2

This draws a line from (x1,y1) to (x2,y2). The line is drawn with the current pen color and styling.

For example, "line 20 20 200 200" draws a line from (20,20) to (200,200) on the memory drawing with the
pen.

page 14/ 18

Liberty BASIC Community Wiki

POLYGON plx ply p2x p2y p3x p3y ...

The POLYGON command draws a polygon with the specified point pairs. You can add practically any
number of points by just including the point pairs. The fill mode for the polygon is determined by
POLYGONMODE.

For example, "polygon 14 10 200 10 300 300 10 400" draws a quadrilateral with the four given point pairs.

POLYGONMODE alternate | winding

This specifies the fill mode for polygons. It is set to winding by default. The difference between polygon
fill modes can be found here.

For example, "polygonmode alternate” changes the polygon filling mode to alternate.

TEXTAT x y

This draws the text that comes after the | symbol in the current query. The text is influenced by the FONT
and TEXTCOLOR.

Here's a short example that demonstrates text drawing:

[Denp2]
NoMai nW n
W ndowWN dth = 640
W ndowHei ght = 480
UpperLeft X = I nt((D spl ayW dt h- Wndoww dt h) / 2)
UpperLeftY = Int ((Di spl ayHei ght - W ndowHei ght)/ 2)

Open
"gx Graphics Denp 2 - Text Drawi ng" For G aphics_NF_NSB As #w n

#wn "TrapC ose [Quit]"
#win "CLS; Down; Fill White; Flush"

Call gx.InitMnoryDrawi ng 640, 480

page 15/ 18

http://leadtools.com/help/leadtools/v15/main/api/Dllsteps/29Illustration.htm

Liberty BASIC Community Wiki

Call gx.Draw
"cls; font Verdana 12; textcolor black; textat 2 2 |Hello, world!"
Call gx.Draw "textat 2 ";2+gxlnfo. Font Hei ght. struct;
" | The height of this font is ";_
gxl nf o. Font Hei ght . struct;" px. :)"

Call gx.Render To hwid(#wi n), 0,0, 0,0, 640, 480
Wi t
[Quit]

Cal | gx. Finish

Cl ose #w n
End

TEXTCOLOR color

Sets the color for text drawing to be the specified color.

FONT face_name sizept [bold] [italic] [strike] [underline]

Sets the font for text drawing to be the specified font. The face name of the font must have _
(underscores) in place of spaces. The size follows in points, and optional attributes (bold, italic, strikeout,
underline) can be listed afterwards in any order.

For example, "font comic_sans_ms 14 bold" sets the font to be Comic Sans MS at 14 points and bold.

GETBMP bitmapName x y width height

This command is equivalent to the native Liberty BASIC graphics command. However, this is useful in the
sense that you do not have to draw the bitmap onscreen to get it in memory again. You can draw in
memory, and get as many bitmaps as you like without the user ever seeing anything.

This command gets the memory drawing area starting at (x,y) with the specified width and height and
loads it as bitmapName. For example, "getbmp mydrawing 10 10 200 200".

gxGL Services

gxGL provides several different functions and variables to make working with graphics easier.

page 16/ 18

Liberty BASIC Community Wiki

Bitmap Dimensions

To get the dimensions of a bitmap loaded with LOADBMP, use the gx. BitmapSize$() function. It returns a
string with two words - the first word is the width of the bitmap in pixels, and the second word is the
height.

si ze$ = gx. Bi t mapSi ze$(" bi t mapNane")
wi dth = Val (Wrd$(size$, 1))
hei ght = Val (Wrd$(si ze$, 2))

Font Height

To get the height of the current font in pixels that is being used by gxGL, just use the FontHeight property
from the gxInfo structure.

f ont Hei ght = gxI nf o. Font Hei ght . struct

Getting the Most Out of gxGL

Here are a few other things to help you when using gxGL in your application.

Drawing Sprites

Sub DrawSprite bmp$, x, vy
" Draw a sprite image at x vy:
si ze$ = gx. Bi tmapSi ze$(bnmp$) : width
hei ght = Val (Wrd$(size$,2)) : halfh
" Draw the mask and the sprite.
Call gx.Draw "blitangle O; blitorigin default; blitstyle and; blit
field ";

Val (Wor d$(si ze$, 1))
I nt (hei ght/ 2)

bmp$;" 0 0 ";width;" ";halfh;" ";x;" ";y;" ";width;" ";halfh;";";
"blitstyle or; blitfield ";bm$;" 0 ";halfh;" ";width;" ";halfh;"
xyt Myt tswidthyt "rhalfh ot
"blitstyle normal ;"
End Sub

Sub DrawSpriteAdv bmp$, x, y, xScale, yScale, rotDeg, origin$
" Draws a sprite scaled, rotated, or both.
" X and y is where the sprite will be rendered to.
" xScale is a decinmal percentage for the rendered wdth of the spr

page 17/ 18

http://www.libertybasicuniversity.com/lb4help/JQQDHD.htm

Liberty BASIC Community Wiki

ite imge.
' To render a sprite with a width of 150% just make xScale = 1.
5
' Basically, the original width of the bitmap is just multiplied
by xScal e.
' yScale is the sane as xScal e, except it is for the height of the
sprite.
" rotDeg is the angle of rotation for the rendered sprite.
' If O, no rotation will be applied.
‘" origin$ is the location of the point relative to the sprite's lo
cation (x,y).
' When in doubt, pass "default” to rotate the sprite around it's
conput ed center.
' Passing a point (such as "5 5") will rotate the sprite around
X+5, y+5.
size$ = gx.Bi t mapSi ze$(bmp$) : width = Val (Word$(si ze$, 1))
hei ght = Val (Wrd$(si ze$,2)) : halfh = Int(height/2)
neww = I nt(w dth*xScale) : newH = Int(hal fh*yScal e)
Call gx.Draw "blitangle ";rotDeg;"; blitorigin ";origin$;"; blitst

yle and; ";

"blitfield ";bmp$;" 0 0 ";width;” ";halfh;" ";x;" ";y;" ";newny" "
;newH, "t

"blitstyle or; blitfield ";bnp$;" 0 ";halfh;" ";width;" ";halfh;"
Xyt Yyt T neww !t tinewH st

"blitstyle normal ;"
End Sub

The above subroutines allow a sprite to be easily drawn using gxGL.

page 18/ 18

http://www.tcpdf.org

	gxGraphicsLibraryHome

