Liberty BASIC Community Wiki

A Jumping Sprite
Table of Contents

A Jumping Sprite

The Sprite Basics

Sprite Jumping

The Demos

Demo 1: Using Branch Event Labels

Demo 2 Using Sub Event Handlers

Changing the Height, Arc and Speed

These two demos show one way to code a jumping sprite. Essentially, both demos are the same, the only
difference being the first uses [BranchLabelEvents] and the second uses called SubEventHandlers. There
are certainly other ways to achieve jumping. The two demos here are intended for the novice game coder.

The Sprite Basics

The first step is to understand how to use sprites. If you are just learning how to code sprites, I highly

recommend The Sprite Byte Tutorials by -
Alyce .

You can also find these installments of the Sprite Byte Series by -
Alyce in the Liberty BASIC

Newsletters

Sprite Byte: The Absolute Minimum Liberty BASIC Newsletter #132
Sprite Byte: All About Masks Liberty BASIC Newsletter #143

Sprite Byte: User-Controlled Sprite Liberty BASIC Newsletter #119
Sprite Byte: Scrolling Background Liberty BASIC Newsletter #120
Sprite Byte: Scaling Liberty BASIC Newsletter #121

Sprite Byte: Shooting Liberty BASIC Newsletter #122

page 1/9

/SpriteJump#Demos
/SpriteJump#Demo1
/SpriteJump#Demo2
/SpriteJump#Demos
http://lbpe.wikispaces.com/graphics
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
http://babek.info/libertybasicfiles/lbnews/
http://babek.info/libertybasicfiles/lbnews/
http://babek.info/libertybasicfiles/lbnews/nl132/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl132/index.htm
http://babek.info/libertybasicfiles/lbnews/nl143/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl143/index.htm
http://babek.info/libertybasicfiles/lbnews/nl119/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl119/index.htm
http://babek.info/libertybasicfiles/lbnews/nl120/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl119/index.htm
http://babek.info/libertybasicfiles/lbnews/nl121/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl121/index.htm
http://babek.info/libertybasicfiles/lbnews/nl122/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl122/index.htm

Liberty BASIC Community Wiki

Sprite Byte: Shooting Multiple Missiles Liberty BASIC Newsletter #124

Sprite Byte: Computer-Controlled Sprite Liberty BASIC Newsletter #125

Sprite Byte: Collision Detection Liberty BASIC Newsletter #126

Sprite Byte: Changing the Sprite Image Liberty BASIC Newsletter #128

Sprite Byte: Manual Cycling and Sound Liberty BASIC Newsletter #129

Sprite Byte: Adding a Scoreboard or Status Panel Liberty BASIC Newsletter #131
Sprite Byte: Cycling Animation and the Timer Liberty BASIC Newsletter #133
Sprite Byte: More Cycling Liberty BASIC Newsletter #134

Sprite Byte: Making Sprite Graphics Persist Liberty BASIC Newsletter #137

Sprite Jumping

There are two ways to cause movement of sprite. One is to issue a SPRITEMOVEXY command. The
other is to find the current X, y coordinates of the sprite with the SPRITEXY? command, increment the
X, Y or both, and then issue a SPRITEXY command. The technique used in these two demos uses the
second method. SPRITEXY? and SPRITEXY are two different commands.

There are two parts to a jump, the ascending motion and the descending motion. It is the y value that
determines height. Because y begins at the upper border of the graphics window (or graphicbox) and
increments down, movement toward a lesser y results in an upward movement and movement toward a
greater Y results in a downward movement. Coding a jump must move upward to a minimum Yy and then
back to the baseline y. Ideally, if the sprite is already in a left or right movement, the jump movement
should jump in that direction. If sprite is in a standstill state, the jump movement should be vertical. It is up
to the coder to keep track of which of the three movements states (left, right, and jump) are active.

Active states are kept in variable flags. This demo uses the flags XDi r and yDi r to keep track of active
direction states.

¢ xDir =0 ' No horizontal movement
¢ xDir =1 "' Movement to Left

¢ xDir =2 ' Movement to Right

* yDir =0 ' No vertical movement

¢ yDir = 1 "' Movement Up

¢ yDir =2 ' Movement Down

page2/9

http://babek.info/libertybasicfiles/lbnews/nl124/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl124/index.htm
http://babek.info/libertybasicfiles/lbnews/nl125/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl125/index.htm
http://babek.info/libertybasicfiles/lbnews/nl126/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl126/index.htm
http://babek.info/libertybasicfiles/lbnews/nl128/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl128/index.htm
http://babek.info/libertybasicfiles/lbnews/nl129/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl129/Home.htm
http://babek.info/libertybasicfiles/lbnews/nl131/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl131/index.htm
http://babek.info/libertybasicfiles/lbnews/nl133/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl133/index.htm
http://babek.info/libertybasicfiles/lbnews/nl134/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl134/index.htm
http://babek.info/libertybasicfiles/lbnews/nl137/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl137/index.htm

Liberty BASIC Community Wiki

Coding should allow both xDi r and yDi r to be in active movement states simultaneously.

The Demos

The first demo uses [BranchEventLabels]. Because all code resides within the main program, all variables
are recognized throughout. The Ti mer is fired every 50 milliseconds. Each time the Ti mer is fired, a
DRAWSPRITES command is issued, whether or not any change in the X or'y variables has been made.

A dKey holds the ASCII value of the last key pressed. NewKey holds the ASCII value of the current key
pressed. If horizontal movement is active and
OldKey = NewKey

then horizontal movement stops. Horizontal cannot be stopped until the jump is completed and the sprite
returns to baseline y. In this way, the user can both initiate and cease horizontal movement.

The second demo uses all SubEventHandlers. Because variables assigned in the main program are local to
the main program, the three flag variables, O dKey, xDi r and yDi r must be declared as Global
variables. Currently, there is a bug when using a timer to fire a sub event handler, causing the program to
hang. Including a WAIT statement before END SUB compensates for that bug.

Demo 1: Using Branch Event Labels

Nomai nwi n
" O dKey holds | ast pressed key
O dKey =0
* xDir and yDir hold noving directions
xDir = 0: ybir =0

W ndoww dt h = 757
W ndowHei ght = 595

Upper Left X
Upper LeftY

Int ((Di splayWdth - Wndowwdth) /2)
I nt ((Di spl ayHei ght - W ndowHei ght) /2)

Menu #deno, "&Options", "E&it", [Quit]
G aphi cbox #deno. gbl, 0, 0, 750, 550

Qpen "Controlling Sprites” for Wndow as #deno
#deno, "Trapclose [Quit]"

" Load the background bnp

page 3/9

Liberty BASIC Community Wiki

Loadbrmp "bg", " SPRI TES\BGL. brmp"
#deno. gbl, "Down; Background bg; Drawsprites”

Load the sprites
Loadbnp "cml", "SPRI TES\cavel. bnp"
Loadbrmp "cnR", " SPRI TES\ cave2. bnp"
#deno. gbl, "Addsprite cmcml cnl cn2 cnk"

' Set the initial cyclesprite command to O
#deno. gbl, "Cyclesprite cm Q"

" Set inital x, y variables (cmfacing right to start)
#deno. gbl, "Spritexy cm 350 450"

Trap keypresses
#deno. gbl, "Wen characterlnput [KeyPress]"
#deno. gbl, "Setfocus"

' Set the tiner
Timer 50, [SeeSprites]
Wi t

[Quit]
Timer O
Unl oadbnmp " bg"
Cl ose #deno
End

[KeyPress]
Newkey = Asc(Ri ght $(1nkey$, 1))
#deno. gbl, "Spritexy? cmx y"
Sel ect Case NewkKey
Case 37
#deno. gbl, "Spriteorient cmmrror”
| f O dKey = NewKey Then

xDir =0
NewKey = 0
El se
xDir =1
End If
Case 38
yDir =1
Case 39

#deno. gbl, "Spriteorient cm normal"
| f O dKey = NewKey Then
xDir =0

page 4/9

Liberty BASIC Community Wiki

NewKey = 0
El se
xDir = 2
End If
End Sel ect
A dKey = NewKey
Wi t

[SeeSprites]
#deno. gbl, "Spritexy? cmx y"
Sel ect Case yDir
Case 1 ' Up
y =y - 10
If y < 350 Then
yDir = 2
y = 350
End If
Case 2 ' Down
y =y +10
If y > 450 Then
yDir =0
y = 450
End If
End Sel ect
Sel ect Case xDir
Case 1 ' Left

X =X - 7

If x < 5 Then
xDir =0
x = 10

End |f

Case 2 ' Right

X =X + 7

If x > 710 Then
xDir =0
X = 700

End |f

End Sel ect

If xDir + yDir > 0 Then

#deno. gbl, "Cyclesprite cm 1"
El se

#deno. gbl, "Cyclesprite cm Q"
End If
#deno. gbl, "Spritexy cm"; X; Y
#deno. gbl, "Setfocus; Drawsprites”
Wi t

page5/9

Liberty BASIC Community Wiki

Demo 2 Using Sub Event Handlers

d obal A dKey, xDir, yDr
A dKey hol ds | ast pressed key
O dKey =0

xDir and yDir hold noving directions
xDir =0: ybDir =0

W ndowwW dt h = 757
W ndowHei ght = 595

Upper Left X
Upper LeftyY

= Int((D splayWdth - WndowW dth) /2)

= Int((D splayHei ght - W ndowHei ght) /2)
Menu #deno, "&Options", "E&it", QuitByMenu

G aphi cbox #deno. gbl, 0, 0, 750, 550

Open "Controlling Sprites" for Wndow as #deno
#deno, "Trapcl ose QuitByTrap"

Load the background bnp
Loadbrmp "bg", " SPRI TES\BGL. brmp"
#deno. gbl, "Down; Background bg; Drawsprites”

Load the sprites
Loadbrmp "cnl", "SPRI TES\cavel. brmp"
Loadbrmp "cnR", " SPRI TES\ cave2. bnp"
#deno. gbl, "Addsprite cmcnil cnml cn2 cnR"

Set the initial cyclesprite command to O
#deno. gbl, "Cyclesprite cm Q"

Set inital x, y variables (cmfacing right to start)
#deno. gbl, "Spritexy cm 350 450"

Trap keypresses
#deno. gbl, "Wen characterl|nput KeyPress"
#deno. gb1l, "Setfocus"”

Set the tinmer
Timer 50, SeeSprites
Wi t

page 6/9

Liberty BASIC Community Wiki

Sub QuitByTrap handl e$
Tinmer O
Unl oadbnmp " bg"
Cl ose #handl e$
End
End Sub

Sub Qui t ByMenu
Call QuitByTrap "#denp"
End Sub

Sub KeyPress handl e$, key$
NewKey = Asc(Ri ght $(key$, 1))
#deno. gbl, "Spritexy? cmx y"
Sel ect Case NewKey
Case 37
#deno. gbl, "Spriteorient cmmrror"
I f O dKey = NewKey Then

xDir =0
NewKey = 0
El se
xDir =1
End |f
Case 38
yDir =1
Case 39

#deno. gbl, "Spriteorient cm normal"”
I f O dKey = NewKey Then

xDir =0
NewKey = 0
El se
xDir = 2
End |f
End Sel ect
A dKey = NewKey
End Sub

Sub SeeSprites
#deno. gbl, "Spritexy? cmx y"
Sel ect Case yDir

Case 1 ' Up
y =y - 10
If y < 350 Then
yDir = 2

page 7/9

Liberty BASIC Community Wiki

y = 350
End If
Case 2 ' Down
y =y +10
If y > 450 Then
yDir =0
y = 450
End If
End Sel ect
Sel ect Case xDir
Case 1 ' Left

X =X -7

If x < 5 Then
xDir =0
x = 10

End If

Case 2 ' Right

X =X + 7

If x > 710 Then
xDir =0
X = 700

End If

End Sel ect

If xDir + yDir > 0 Then

#deno. gbl, "Cyclesprite cm 1"

El se

#deno. gbl, "Cyclesprite cm 0"

End If
#deno. gbl, "Spritexy cm"; x;"

#deno. gbl, "Setfocus; Drawsprites”
Currently there is a bug in the sub tiner

requiring a WAIT statenent here
Wi t
End Sub

Table of Contents

A Jumping Sprite

The Sprite Basics

Sprite Jumping

page 8/9

Liberty BASIC Community Wiki

The Demos

Demo 1: Using Branch Event Labels
Demo 2 Using Sub Event Handlers

Changing the Height, Arc and Speed

Changing the Height, Arc and Speed

The minimum Y value in these two demos is 350. Once the sprite ascends to a height of 350, the sprite
begins its descent. Decreasing that value will cause the sprite to jump higher. When XDi r is active (> 0),
each DRAWSPRITES command will move the sprite horizontally by 7 pixels (left or right). When yDi r
is active (> 0), each DRAWSPRITES command will move the sprite vertically by 5 pixels (up or down).
Adjusting the XDi r to a lesser number will result in a steeper jump. Adjusting XDi r to a greater number
will result in a longer jump. The Ti mer is set to 50 milliseconds. A lesser number will increase the

animation speed. A greater number will decrease the animation speed. -
JanetTerra

page 9/9

https://www.wikispaces.com/user/view/JanetTerra
https://www.wikispaces.com/user/view/JanetTerra
http://www.tcpdf.org

	SpriteJump

