
Liberty BASIC Community Wiki

A Jumping Sprite

Table of Contents
A Jumping Sprite

The Sprite Basics

Sprite Jumping

The Demos

Demo 1: Using Branch Event Labels

Demo 2 Using Sub Event Handlers

Changing the Height, Arc and Speed

These two demos show one way to code a jumping sprite. Essentially, both demos are the same, the only
difference being the first uses [BranchLabelEvents] and the second uses called SubEventHandlers. There
are certainly other ways to achieve jumping. The two demos here are intended for the novice game coder.

The Sprite Basics

The first step is to understand how to use sprites. If you are just learning how to code sprites, I highly
recommend The Sprite Byte Tutorials by -

 Alyce .

You can also find these installments of the Sprite Byte Series by -
 Alyce in the Liberty BASIC

Newsletters

Sprite Byte: The Absolute Minimum Liberty BASIC Newsletter #132

Sprite Byte: All About Masks Liberty BASIC Newsletter #143

Sprite Byte: User-Controlled Sprite Liberty BASIC Newsletter #119

Sprite Byte: Scrolling Background Liberty BASIC Newsletter #120

Sprite Byte: Scaling Liberty BASIC Newsletter #121

Sprite Byte: Shooting Liberty BASIC Newsletter #122

 page 1 / 9

/SpriteJump#Demos
/SpriteJump#Demo1
/SpriteJump#Demo2
/SpriteJump#Demos
http://lbpe.wikispaces.com/graphics
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
https://www.wikispaces.com/user/view/Alyce
http://babek.info/libertybasicfiles/lbnews/
http://babek.info/libertybasicfiles/lbnews/
http://babek.info/libertybasicfiles/lbnews/nl132/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl132/index.htm
http://babek.info/libertybasicfiles/lbnews/nl143/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl143/index.htm
http://babek.info/libertybasicfiles/lbnews/nl119/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl119/index.htm
http://babek.info/libertybasicfiles/lbnews/nl120/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl119/index.htm
http://babek.info/libertybasicfiles/lbnews/nl121/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl121/index.htm
http://babek.info/libertybasicfiles/lbnews/nl122/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl122/index.htm

Liberty BASIC Community Wiki

Sprite Byte: Shooting Multiple Missiles Liberty BASIC Newsletter #124

Sprite Byte: Computer-Controlled Sprite Liberty BASIC Newsletter #125

Sprite Byte: Collision Detection Liberty BASIC Newsletter #126

Sprite Byte: Changing the Sprite Image Liberty BASIC Newsletter #128

Sprite Byte: Manual Cycling and Sound Liberty BASIC Newsletter #129

Sprite Byte: Adding a Scoreboard or Status Panel Liberty BASIC Newsletter #131

Sprite Byte: Cycling Animation and the Timer Liberty BASIC Newsletter #133

Sprite Byte: More Cycling Liberty BASIC Newsletter #134

Sprite Byte: Making Sprite Graphics Persist Liberty BASIC Newsletter #137

Sprite Jumping

There are two ways to cause movement of sprite. One is to issue a SPRITEMOVEXY command. The
other is to find the current x, y coordinates of the sprite with the SPRITEXY? command, increment the
x, y or both, and then issue a SPRITEXY command. The technique used in these two demos uses the
second method. SPRITEXY? and SPRITEXY are two different commands.

There are two parts to a jump, the ascending motion and the descending motion. It is the y value that
determines height. Because y begins at the upper border of the graphics window (or graphicbox) and
increments down, movement toward a lesser y results in an upward movement and movement toward a
greater y results in a downward movement. Coding a jump must move upward to a minimum y and then
back to the baseline y. Ideally, if the sprite is already in a left or right movement, the jump movement
should jump in that direction. If sprite is in a standstill state, the jump movement should be vertical. It is up
to the coder to keep track of which of the three movements states (left, right, and jump) are active.

Active states are kept in variable flags. This demo uses the flags xDir and yDir to keep track of active
direction states.

xDir = 0 ' No horizontal movement
xDir = 1 ' Movement to Left
xDir = 2 ' Movement to Right
yDir = 0 ' No vertical movement
yDir = 1 ' Movement Up
yDir = 2 ' Movement Down

 page 2 / 9

http://babek.info/libertybasicfiles/lbnews/nl124/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl124/index.htm
http://babek.info/libertybasicfiles/lbnews/nl125/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl125/index.htm
http://babek.info/libertybasicfiles/lbnews/nl126/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl126/index.htm
http://babek.info/libertybasicfiles/lbnews/nl128/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl128/index.htm
http://babek.info/libertybasicfiles/lbnews/nl129/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl129/Home.htm
http://babek.info/libertybasicfiles/lbnews/nl131/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl131/index.htm
http://babek.info/libertybasicfiles/lbnews/nl133/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl133/index.htm
http://babek.info/libertybasicfiles/lbnews/nl134/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl134/index.htm
http://babek.info/libertybasicfiles/lbnews/nl137/sprite.htm
http://babek.info/libertybasicfiles/lbnews/nl137/index.htm

Liberty BASIC Community Wiki

Coding should allow both xDir and yDir to be in active movement states simultaneously.

The Demos

The first demo uses [BranchEventLabels]. Because all code resides within the main program, all variables
are recognized throughout. The Timer is fired every 50 milliseconds. Each time the Timer is fired, a
DRAWSPRITES command is issued, whether or not any change in the x or y variables has been made.

OldKey holds the ASCII value of the last key pressed. NewKey holds the ASCII value of the current key
pressed. If horizontal movement is active and
OldKey = NewKey

then horizontal movement stops. Horizontal cannot be stopped until the jump is completed and the sprite
returns to baseline y. In this way, the user can both initiate and cease horizontal movement.

The second demo uses all SubEventHandlers. Because variables assigned in the main program are local to
the main program, the three flag variables, OldKey, xDir and yDir must be declared as Global
variables. Currently, there is a bug when using a timer to fire a sub event handler, causing the program to
hang. Including a WAIT statement before END SUB compensates for that bug.

Demo 1: Using Branch Event Labels

 Nomainwin
' OldKey holds last pressed key
 OldKey = 0

' xDir and yDir hold moving directions
 xDir = 0: yDir = 0

 WindowWidth = 757
 WindowHeight = 595

 UpperLeftX = Int((DisplayWidth - WindowWidth) /2)
 UpperLeftY = Int((DisplayHeight - WindowHeight) /2)

 Menu #demo, "&Options", "E&xit", [Quit]
 Graphicbox #demo.gb1, 0, 0, 750, 550

 Open "Controlling Sprites" for Window as #demo
 #demo, "Trapclose [Quit]"

' Load the background bmp

 page 3 / 9

Liberty BASIC Community Wiki

 Loadbmp "bg", "SPRITES\BG1.bmp"
 #demo.gb1, "Down; Background bg; Drawsprites"

' Load the sprites
 Loadbmp "cm1", "SPRITES\cave1.bmp"
 Loadbmp "cm2", "SPRITES\cave2.bmp"
 #demo.gb1, "Addsprite cm cm1 cm1 cm2 cm2"

' Set the initial cyclesprite command to 0
 #demo.gb1, "Cyclesprite cm 0"

' Set inital x, y variables (cm facing right to start)
 #demo.gb1, "Spritexy cm 350 450"

' Trap keypresses
 #demo.gb1, "When characterInput [KeyPress]"
 #demo.gb1, "Setfocus"

' Set the timer
 Timer 50, [SeeSprites]
 Wait

[Quit]
 Timer 0
 Unloadbmp "bg"
 Close #demo
 End

[KeyPress]
 NewKey = Asc(Right$(Inkey$, 1))
 #demo.gb1, "Spritexy? cm x y"
 Select Case NewKey
 Case 37
 #demo.gb1, "Spriteorient cm mirror"
 If OldKey = NewKey Then
 xDir = 0
 NewKey = 0
 Else
 xDir = 1
 End If
 Case 38
 yDir = 1
 Case 39
 #demo.gb1, "Spriteorient cm normal"
 If OldKey = NewKey Then
 xDir = 0

 page 4 / 9

Liberty BASIC Community Wiki

 NewKey = 0
 Else
 xDir = 2
 End If
 End Select
 OldKey = NewKey
 Wait

[SeeSprites]
 #demo.gb1, "Spritexy? cm x y"
 Select Case yDir
 Case 1 ' Up
 y = y - 10
 If y < 350 Then
 yDir = 2
 y = 350
 End If
 Case 2 ' Down
 y = y + 10
 If y > 450 Then
 yDir = 0
 y = 450
 End If
 End Select
 Select Case xDir
 Case 1 ' Left
 x = x - 7
 If x < 5 Then
 xDir = 0
 x = 10
 End If
 Case 2 ' Right
 x = x + 7
 If x > 710 Then
 xDir = 0
 x = 700
 End If
 End Select
 If xDir + yDir > 0 Then
 #demo.gb1, "Cyclesprite cm 1"
 Else
 #demo.gb1, "Cyclesprite cm 0"
 End If
 #demo.gb1, "Spritexy cm ";x;" ";y
 #demo.gb1, "Setfocus; Drawsprites"
 Wait

 page 5 / 9

Liberty BASIC Community Wiki

Demo 2 Using Sub Event Handlers

 Global OldKey, xDir, yDir
' OldKey holds last pressed key
 OldKey = 0

' xDir and yDir hold moving directions
 xDir = 0: yDir = 0

 WindowWidth = 757
 WindowHeight = 595

 UpperLeftX = Int((DisplayWidth - WindowWidth) /2)
 UpperLeftY = Int((DisplayHeight - WindowHeight) /2)

 Menu #demo, "&Options", "E&xit", QuitByMenu
 Graphicbox #demo.gb1, 0, 0, 750, 550

 Open "Controlling Sprites" for Window as #demo
 #demo, "Trapclose QuitByTrap"

' Load the background bmp
 Loadbmp "bg", "SPRITES\BG1.bmp"
 #demo.gb1, "Down; Background bg; Drawsprites"

' Load the sprites
 Loadbmp "cm1", "SPRITES\cave1.bmp"
 Loadbmp "cm2", "SPRITES\cave2.bmp"
 #demo.gb1, "Addsprite cm cm1 cm1 cm2 cm2"

' Set the initial cyclesprite command to 0
 #demo.gb1, "Cyclesprite cm 0"

' Set inital x, y variables (cm facing right to start)
 #demo.gb1, "Spritexy cm 350 450"

' Trap keypresses
 #demo.gb1, "When characterInput KeyPress"
 #demo.gb1, "Setfocus"

' Set the timer
 Timer 50, SeeSprites
 Wait

 page 6 / 9

Liberty BASIC Community Wiki

Sub QuitByTrap handle$
 Timer 0
 Unloadbmp "bg"
 Close #handle$
 End
End Sub

Sub QuitByMenu
 Call QuitByTrap "#demo"
End Sub

Sub KeyPress handle$, key$
 NewKey = Asc(Right$(key$, 1))
 #demo.gb1, "Spritexy? cm x y"
 Select Case NewKey
 Case 37
 #demo.gb1, "Spriteorient cm mirror"
 If OldKey = NewKey Then
 xDir = 0
 NewKey = 0
 Else
 xDir = 1
 End If
 Case 38
 yDir = 1
 Case 39
 #demo.gb1, "Spriteorient cm normal"
 If OldKey = NewKey Then
 xDir = 0
 NewKey = 0
 Else
 xDir = 2
 End If
 End Select
 OldKey = NewKey
End Sub

Sub SeeSprites
 #demo.gb1, "Spritexy? cm x y"
 Select Case yDir
 Case 1 ' Up
 y = y - 10
 If y < 350 Then
 yDir = 2

 page 7 / 9

Liberty BASIC Community Wiki

 y = 350
 End If
 Case 2 ' Down
 y = y + 10
 If y > 450 Then
 yDir = 0
 y = 450
 End If
 End Select
 Select Case xDir
 Case 1 ' Left
 x = x - 7
 If x < 5 Then
 xDir = 0
 x = 10
 End If
 Case 2 ' Right
 x = x + 7
 If x > 710 Then
 xDir = 0
 x = 700
 End If
 End Select
 If xDir + yDir > 0 Then
 #demo.gb1, "Cyclesprite cm 1"
 Else
 #demo.gb1, "Cyclesprite cm 0"
 End If
 #demo.gb1, "Spritexy cm ";x;" ";y
 #demo.gb1, "Setfocus; Drawsprites"
' Currently there is a bug in the sub timer
' requiring a WAIT statement here
 Wait
End Sub

Table of Contents
A Jumping Sprite

The Sprite Basics

Sprite Jumping

 page 8 / 9

Liberty BASIC Community Wiki

The Demos

Demo 1: Using Branch Event Labels

Demo 2 Using Sub Event Handlers

Changing the Height, Arc and Speed

Changing the Height, Arc and Speed

The minimum y value in these two demos is 350. Once the sprite ascends to a height of 350, the sprite
begins its descent. Decreasing that value will cause the sprite to jump higher. When xDir is active (> 0),
each DRAWSPRITES command will move the sprite horizontally by 7 pixels (left or right). When yDir
is active (> 0), each DRAWSPRITES command will move the sprite vertically by 5 pixels (up or down).
Adjusting the xDir to a lesser number will result in a steeper jump. Adjusting xDir to a greater number
will result in a longer jump. The Timer is set to 50 milliseconds. A lesser number will increase the
animation speed. A greater number will decrease the animation speed. -

 JanetTerra

Powered by TCPDF (www.tcpdf.org)

 page 9 / 9

https://www.wikispaces.com/user/view/JanetTerra
https://www.wikispaces.com/user/view/JanetTerra
http://www.tcpdf.org

	SpriteJump

