
Liberty BASIC Community Wiki

This is the source code for a utility made in LB, that makes it easy to associate .BAS files to Liberty
BASIC, no matter the version.

It automatically find LB installs, assuming they're in default locations, and gives the option to associate any
of them to the .BAS file extension.

It also has a manual selection option, to allow it to associate any EXE(or any copy of LB in a non-standard
location) to the BAS file extension.

call InitRegistry
gosub [findLBexes]

dim LBExeList$(numLBexes)
For x = 1 to numLBexes
 LBExeList$(x) = word$(LBExes$, x, "|")
Next x

'Form created with the help of Freeform 3 v07-15-08
'Generated on Jan 15, 2016 at 22:13:48

[setup.m.Window]

 nomainwin

 '-----Begin code for #m

 WindowWidth = 520
 WindowHeight = 245
 UpperLeftX=int((DisplayWidth-WindowWidth)/2)
 UpperLeftY=int((DisplayHeight-WindowHeight)/2)

 '-----Begin GUI objects code

 button #m.btnFindExe,"Locate custom EXE",[findEXE], UL, 40,
172, 140, 25
 TextboxColor$ = "white"
 textbox #m.tbExePath, 40, 132, 415, 25
 button #m.btnSetAssociation,"Set Association",[
setAssociation], UL, 350, 172, 103, 25
 ListboxColor$ = "white"
 listbox #m.lbExeList, LBExeList$(), [
selectListEntry], 40, 17, 415, 100

 page 1 / 10

Liberty BASIC Community Wiki

 '-----End GUI objects code

 open "Set BAS file association" for window as #m
 print #m, "font ms_sans_serif 10"
 #m.btnSetAssociation, "!disable"
 #m.lbExeList, "singleclickselect"
 #m, "trapclose [quit.m]"

[m.inputLoop] 'wait here for input event
 wait

[selectListEntry]
 #m.lbExeList, "selection? LBPath$"
 #m.tbExePath, LBPath$
 #m.btnSetAssociation, "!enable"
 wait

[findEXE] 'Perform action for the button named 'btnFindExe'

 'Insert your own code here

 filedialog "Locate LB exe...", "*.exe", LBPath$
 if LBPath$ = "" then
 #m.tbExePath, "<no EXE file selected>"
 #m.btnSetAssociation, "!disable"
 else
 #m.btnSetAssociation, "!enable"
 end if

 #m.tbExePath, LBPath$

 wait

[setAssociation]
'Perform action for the button named 'btnSetAssociation'

 'Insert your own code here
 assocPath$ = chr$(34) + LBPath$ + chr$(34) + " " + chr$(34) +
"%1" + chr$(34)
 a = RegOpenKeyEx(_HKEY_CLASSES_ROOT, ".bas", 0, _KEY_READ, hBas)
 If a <> 0 then
 goto [skipBackup]
 end if

 page 2 / 10

Liberty BASIC Community Wiki

 bufSize = 0
[bufferLoop]
 buf$ = space$(bufSize)

 a = RegQueryValueEx(hBas, "", buf$, bufSize)
 if a = ERROR.MORE.DATA then [bufferLoop]

 if a <> 0 then
 a = RegCloseKey(hBas)
 goto [skipBackup]
 wait
 end if

 originalBasAssocation$ = trim$(buf$)

[skipBackup]
 a = RegCreateKeyEx(_HKEY_CURRENT_USER,
"Software\Classes\LibertyBASIC.BasFile\shell\open\command",_
 0, _KEY_ALL_ACCESS, hCommand)

 If a <> 0 then
 ret = FormatSystemErrorMessage(a, formattedMessage$)
 errMsg$ = "Registry error" + chr$(13) + _

"Unable to open HKCU\Software\Classes\LibertyBASIC.BasFile\shell\open\
command for writing."
 errMsg$ = errMsg$ + chr$(13) + chr$(13) +
"RegCreateKeyEx() returned ";a;":"
 errMsg$ = errMsg$ + chr$(13) + formattedMessage$
 notice errMsg$
 wait
 end if

 a = RegSetValueEx(hCommand, "", assocPath$)
 If a <> 0 then
 ret = FormatSystemErrorMessage(a, formattedMessage$)
 errMsg$ = "Registry error" + chr$(13) + _

"Unable to write new association to HKCU\Software\Classes\LibertyBASIC
.BasFile\shell\open\command\(default)"
 errMsg$ = errMsg$ + chr$(13) + chr$(13) +
"RegSetValueEx() returned ";a;":"
 errMsg$ = errMsg$ + chr$(13) + formattedMessage$
 notice errMsg$

 page 3 / 10

Liberty BASIC Community Wiki

 a = RegCloseKey(hCommand)
 wait
 end if

 a = RegCloseKey(hCommand)

 a = RegCreateKeyEx(_HKEY_CURRENT_USER,
"Software\Classes\.bas", 0, _KEY_ALL_ACCESS, hBas)
 If a <> 0 then
 ret = FormatSystemErrorMessage(a, formattedMessage$)
 errMsg$ = "Registry error" + chr$(13) +
"Unable to open HKCU\Software\Classes\.bas for writing."
 errMsg$ = errMsg$ + chr$(13) + chr$(13) +
"RegCreateKeyEx() returned ";a;":"
 errMsg$ = errMsg$ + chr$(13) + formattedMessage$
 notice errMsg$
 End If

 a = RegSetValueEx(hBas, "", "LibertyBASIC.BasFile")
 If a <> 0 then
 ret = FormatSystemErrorMessage(a, formattedMessage$)
 errMsg$ = "Registry error" + chr$(13) + _

"Unable to write new association identifier to HKCU\Software\Classes\.
bas\(default)."
 errMsg$ = errMsg$ + chr$(13) + chr$(13) +
"RegSetValueEx() returned ";a;":"
 errMsg$ = errMsg$ + chr$(13) + formattedMessage$
 notice errMsg$

 a = RegCloseKey(hBas)
 wait
 End If

 a = RegCloseKey(hBas)

 Call SHNotifyAssocChange

 Notice "New association set!"
 wait

[quit.m] 'End the program
 call EndRegistry
 close #m
 end

 page 4 / 10

Liberty BASIC Community Wiki

'===
' SUBS/FUNCTIONS BELOW
'===

[findLBexes]
CSIDL.PROGRAMFILES = 38
programFilesName$ = GetFileName$(GetSpecialFolder$(
CSIDL.PROGRAMFILES))

'EXE names to search for
searchExes$ = "liberty.exe lbpro.exe lbworkshop.exe jbasic.exe"
driveNum = 1
driveLetter$ = word$(Drives$, driveNum) + "\"
dim info$(10, 10)

[nextDrive]
files driveLetter$, info$()

numFiles = val(info$(0,0))
numFolders = val(info$(0,1))

searchPath$ = ""

'Confirm that the folder <driveLetter>\<programFilesName> exists
if numFolders = 0 then [skipSearchFolder]
for x = numFiles+1 to (numFiles+numFolders)
 folderName$ = info$(x, 1)
 if folderName$ = programFilesName$ then
 searchPath$ = driveLetter$ + folderName$
 end if
next x

print "searchPath$ = ";searchPath$

'Search through <programFilesName> for LB-related program folders

LBFolderList$ = ""
numLBFolders = 0
if searchPath$ <> "" then
 files searchPath$, info$()
 numFiles = val(info$(0,0))
 numFolders = val(info$(0,1))

 if numFolders = 0 then [skipSearchFolder]

 page 5 / 10

Liberty BASIC Community Wiki

 for x = numFiles+1 to (numFiles+numFolders)
 folderName$ = info$(x, 1)

 foundLBfolder = 0
 if left$(folderName$, 13) = "Liberty BASIC" then
 foundLBfolder = 1
 if left$(folderName$, 10) = "Just BASIC" then
 foundLBfolder = 1
 if folderName$ = "LB Workshop" then foundLBfolder = 1

 if foundLBfolder = 1 then
 LBFolderList$ = LBFolderList$ + searchPath$ + "\" +
 folderName$ + "|"
 numLBFolders = numLBFolders + 1
 end if
 next x
end if

print LBFolderList$

'For each LB-related program folder, find the EXE name
if numLBFolders = 0 then [skipSearchFolder]
for x = 1 to numLBFolders
 searchPath$ = word$(LBFolderList$, x, "|")

 files searchPath$, info$()
 numFiles = val(info$(0, 0))

 if numFiles = 0 then [doNextFolder]
 For y = 1 to numFiles
 if instr(searchExes$, info$(y, 0)) > 0 then
 LBExes$ = LBExes$ + searchPath$ + "\" + info$(y, 0) + "|"
 numLBexes = numLBexes + 1
 end if
 next y

 [doNextFolder]
next x
[skipSearchFolder]

driveNum = driveNum + 1
driveLetter$ = word$(Drives$, driveNum) + "\"
if driveLetter$ <> "\" then [nextDrive]

return

 page 6 / 10

Liberty BASIC Community Wiki

[theEnd]
end

Function GetFileName$(fullPath$)
 lenFullPath = len(fullPath$)

 For x = lenFullPath to 1 step -1
 if mid$(fullPath$, x, 1) = "\" then
 GetFileName$ = mid$(fullPath$, x+1)
 goto [skip]
 end if
 next x
 [skip]
End Function

Function GetSpecialFolder$(CSIDL)
 struct IDL, _
 cb As uLong, _
 abID As short
 calldll #shell32, "SHGetSpecialFolderLocation",_
 0 as ulong, _
 CSIDL as ulong, _
 IDL as struct,_
 ret as ulong
 if ret=0 then
 Path$ = Space$(_MAX_PATH)
 id = IDL.cb.struct
 calldll #shell32, "SHGetPathFromIDListA",_
 id as ulong, _
 Path$ as ptr, _
 ret as ulong
 GetSpecialFolder$ = trim$(Path$)
 end if
 if GetSpecialFolder$ = "" then
 GetSpecialFolder$ = "Not Applicable"
End Function

Sub SHNotifyAssocChange
 SHCNE.ASSOCCHANGED = hexdec("08000000")
 SHCNF.IDLIST = 0

 CallDLL #shell32, "SHChangeNotify",_
 SHCNE.ASSOCCHANGED as long,_
 SHCNF.IDLIST as long,_
 0 as long,_

 page 7 / 10

Liberty BASIC Community Wiki

 0 as long,_
 ret as void
End Sub

Function FormatSystemErrorMessage(code, byref buffer$)
 bufLen = (1024 * 64) - 1
 buffer$ = space$(bufLen)

 CallDLL #kernel32, "FormatMessageA",_
 _FORMAT_MESSAGE_FROM_SYSTEM as long,_
 0 as long,_
 code as long,_
 0 as long,_
 buffer$ as ptr,_
 bufLen as long,_
 0 as long,_
 FormatSystemErrorMessage as long

 buffer$ = trim$(buffer$)
End Function

Function GetLastError()
 CallDLL #kernel32, "GetLastError",_
 GetLastError as long
End Function

Sub InitRegistry
 Open "advapi32" for DLL as #advapi32
 Global ERROR.MORE.DATA : ERROR.MORE.DATA = 234
End Sub

Sub EndRegistry
 close #advapi32
End Sub

Function RegCreateKeyEx(hKey, subKey$, dwOptions,
 samDesired, byref phkResult)
 struct res, a as ulong

 CallDLL #advapi32, "RegCreateKeyExA",_
 hKey as ulong,_
 subKey$ as ptr,_
 0 as long,_ 'Reserved, must be 0.
 0 as ulong,_ 'User-defined class type of key.
 _ 'Very unlikely to be used, so 0.
 dwOptions as long,_

 page 8 / 10

Liberty BASIC Community Wiki

 samDesired as long,_
 0 as ulong,_
'lpSecurityAttributes, used for setting permissions on
 _
'the key, among other things. Unlikely to be used.
 res as struct,_
 0 as ulong,_
'lpDisposition, tells us if the key was opened or created.
 _ 'Again, unlikely to be used, so 0.
 RegCreateKeyEx as long

 phkResult = res.a.struct
End Function

'For ease of function use, all registry keys will be strings.
Function RegSetValueEx(hKey, valueName$, data$)
 cbSize = len(data$)
 CallDLL #advapi32, "RegSetValueExA",_
 hKey as ulong,_
 valueName$ as ptr,_
 0 as long,_ 'Reserved.
 _REG_SZ as long,_ 'Always string.
 data$ as ptr,_
 cbSize as long,_
 RegSetValueEx as long
End Function

Function RegOpenKeyEx(hKey, subKey$, dwOptions, samDesired, byref
 phkResult)
 struct res, a as ulong

 CallDLL #advapi32, "RegOpenKeyExA",_
 hKey as ulong,_
 subKey$ as ptr,_
 0 as long,_ 'Reserved, must be 0.
 0 as ulong,_ 'User-defined class type of key.
 _ 'Very unlikely to be used, so 0.
 dwOptions as long,_
 samDesired as long,_
 RegCreateKeyEx as long

 phkResult = res.a.struct
End Function

Function RegQueryValueEx(hKey, valueName$, byref data$, byref bufSize)
 struct a, size as long

 page 9 / 10

Liberty BASIC Community Wiki

 a.size.struct = bufSize

 CallDLL #advapi32, "RegQueryValueExA",_
 hKey as ulong,_
 valueName$ as ptr,_
 0 as long,_ 'Reserved.
 0 as ulong,_
'Datatype. Not used, this function only uses REG_SZ.
 data$ as ptr,_
 a as struct,_
 RegQueryValueEx as long

 bufSize = a.size.struct
End Function

Function RegDeleteValue(hKey, valueName$)
 CallDLL #advapi32, "RegDeleteValueA",_
 hKey as ulong,_
 valueName$ as ptr,_
 RegDeleteValue as long
End Function

Function RegDeleteKey(hKey, keyName$)
 CallDLL #advapi32, "RegDeleteKeyA",_
 hKey as ulong,_
 keyName$ as ptr,_
 RegDeleteKey as long
End Function

Function RegCloseKey(hKey)
 CallDLL #advapi32, "RegCloseKey",_
 hKey as ulong,_
 RegCloseKey as long
End Function

Powered by TCPDF (www.tcpdf.org)

 page 10 / 10

http://www.tcpdf.org

	BAS File Association Utility

