Older Version Newer Version

tenochtitlanuk tenochtitlanuk Aug 4, 2013

= Vector=Vector 2d library =library= [[toc]] Closely related to [[http://libertybasic.conforums.com/index.cgi?board=LB3&action=display&num=1285066076|Complex[[http://libertybasic.conforums.com/index.cgi?board=LB3&action=display&num=1285066076|Complex numbers (a library & demonstrations)]] by tenochtitlanuk (he likely has it on his own site as well, but I wasn't able to find it) uses[[http://www.diga.me.uk/index.html|tenochtitlanuk]]. Uses ATAN2() function coded by Stefan Pendl (thread [[http://libertybasic.conforums.com/index.cgi?board=LB3&action=display&num=1290529526|Collision detection maths error]], reply 6) There are times then you need add vectors, scale vectors, decompose vectors into normal and tangential parts. In these times, this library might prove handy. Of cource calling functions take time so everything works slower - but they say "Make it RUN, make it run RIGHT, then make it run FAST". Vectors Vectors are stored in a string as a space-separated pair of numbers. So there is roundoff errors. Also, ther are no checks if length of vector is null - so function vectUnit$(v$) might fail on that. As slight bonus, you can use vectors "as is" in graphic commands. Like Like this [[code format="lb"]] v1$=vect$(100,100) v2$=vect$(300,200) main.graphicbox1 "line ";v1$;" ";v2$ [[code]] Or even like this [[code format="lb"]] offset$=vect$(100,100) v1$=vect$(1,1) v2$=vect$(3,2) main.graphicbox1 "line ";vectAdd$(offset$,vectScale$(10,v1$));" ";vectAdd$(offset$,vectScale$(10,v2$)) [[code]] == Console==Console (text mode) demo ==demo== [[code format="lb"]] 'vector 2d lib demo 'vectors stored as "x y" pairs, (to be splitted by Word$) 'by tsh73, Feb 2013 'creating a vector v1$=vect$(3,4) print "New vector created: ";v1$ print 'copying a vector. Just assign to string variable v2$=v1$ print "Getting a components of a vector:" print vectX(v1$) print vectY(v1$) print print "Length of a vector:" print vectLen(v1$) print print "Unit vector (length=1) with same direction:" u1$=vectUnit$(v1$) print u1$ print "and it's length is (as should be):" print vectLen(u1$) print print "Adding vectors" print "let's make another vector" v3$=vect$(1,-2) print v3$ print "The sum (";v1$;") + (";v3$;") is" print vectAdd$(v1$,v3$) print print "Subtracting same two vectors" print "(";v1$;") - (";v3$;") is" print vectSub$(v1$,v3$) print print "Dot product of same two vectors" print "(";v1$;")*(";v3$;") is" print vectDotProduct(v1$,v3$) print "as a side note, it is 0 for perpendicular vectors" print print "Scaling a vector" print "by half" print vectScale$(0.5,v1$) print "3x" print vectScale$(3,v1$) print "reverse vector by multiplying it by -1" print vectScale$(-1,v1$) print print "We can decompose any vector into sum " print "of normal and tangential parts along any direction" print "First, let's try along OX axis" base$ = vect$(1,0) print "The direction is "; base$ t$=vectTangent$(v1$,base$) print "Tangential part is ";t$ n$=vectNorm$(v1$,base$) print "Normal part is ";n$ print "Their sum is "; vectAdd$(t$,n$) print "(same as initial vector)" print print "Now try it with another direction" base$ = v3$ print "The direction is "; base$ t$=vectTangent$(v1$,base$) print "Tangential part is ";t$ n$=vectNorm$(v1$,base$) print "Normal part is ";n$ print "Their sum is "; vectAdd$(t$,n$) print "(should be same as initial vector)" print "(Well, you see there is roundoff errors possible)" print print "Angle between vector and OX axis, radians" print vectAngle(v1$) print print "So with length and angle, we can convert to polar coords" print "Vector ";v1$;" is" print "Polar radius and angle " r=vectLen(v1$) a=vectAngle(v1$) print r, a print print "There is a function to convert from polar to cartesian" print vectFromPolar$(r, a) print "(should be same as initial vector)" print "Some other vector: length 7 at angle 60 degrees" r=7 a=60*acs(-1)/180 'acs(-1)==pi print vectFromPolar$(r, a) print print "Rotating vector by arbitrary agle" print "by 30 degrees" print vectRotate$(v1$,30*acs(-1)/180) print "by 90 degrees" a=90*acs(-1)/180 'acs(-1)==pi, so it's actually pi/2 print vectRotate$(v1$,a) print "by -90 degrees" print vectRotate$(v1$,0-a) 'JB doesn't allow "-a" print "by 180 degrees" print vectRotate$(v1$,180*acs(-1)/180) print "(Well, easier to myltiply by -1)" print print "*That's all, folks.*" end '================================= 'vector 2d lib 'vectors as "x y" pairs, to be splitted by Word$ 'by tsh73, Feb 2013 function vect$(x,y) vect$=x;" ";y end function function vectX(v$) vectX=val(word$(v$,1)) end function function vectY(v$) vectY=val(word$(v$,2)) end function function vectLen(v$) x=val(word$(v$,1)) y=val(word$(v$,2)) vectLen=sqr(x*x+y*y) end function function vectUnit$(v$) x=val(word$(v$,1)) y=val(word$(v$,2)) vectLen=sqr(x*x+y*y) vectUnit$=x/vectLen;" ";y/vectLen end function function vectAdd$(v1$,v2$) x1=val(word$(v1$,1)) y1=val(word$(v1$,2)) x2=val(word$(v2$,1)) y2=val(word$(v2$,2)) vectAdd$=x1+x2;" ";y1+y2 end function function vectSub$(v1$,v2$) x1=val(word$(v1$,1)) y1=val(word$(v1$,2)) x2=val(word$(v2$,1)) y2=val(word$(v2$,2)) vectSub$=x1-x2;" ";y1-y2 end function function vectDotProduct(v1$,v2$) x1=val(word$(v1$,1)) y1=val(word$(v1$,2)) x2=val(word$(v2$,1)) y2=val(word$(v2$,2)) vectDotProduct=x1*x2+y1*y2 end function function vectScale$(a,v$) 'a * vector v$ x=val(word$(v$,1)) y=val(word$(v$,2)) vectScale$=a*x;" ";a*y end function function vectTangent$(v$,base$) n$=vectUnit$(base$) vectTangent$=vectScale$(vectDotProduct(n$,v$),n$) end function function vectNorm$(v$,base$) vectNorm$=vectSub$(v$,vectTangent$(v$,base$)) end function function vectAngle(v$) x=val(word$(v$,1)) y=val(word$(v$,2)) vectAngle=atan2(y,x) end function function vectFromPolar$(rho, phi) vectFromPolar$=rho*cos(phi);" ";rho*sin(phi) end function function vectRotate$(v$,alpha) x=val(word$(v$,1)) y=val(word$(v$,2)) rho=sqr(x*x+y*y) phi=atan2(y,x)+alpha vectRotate$=rho*cos(phi);" ";rho*sin(phi) end function function dePi$(x) 'pure aestetics pi = acs(-1) dePi$=x/pi;"Pi" end function '--------------------------- function atan2(y,x) pi = acs(-1) 'could be made global to save some ticks if x <> 0 then arctan = atn(y/x) select case case x > 0 atan2 = arctan case y>=0 and x<0 atan2 = pi + arctan case y<0 and x<0 atan2 = arctan - pi case y>0 and x=0 atan2 = pi / 2 case y<0 and x=0 atan2 = pi / -2 end select end function [[code]] == Same==Same demo but with graphics ==graphics== [[code format="lb"]] 'vector 2d lib demo ' - Graphic part 'by tsh73, Feb 2013 global offset$, scale 'window and instructions gosub [initWindow] call waitClick 'creating a vector v1$=vect$(3,4) print "New vector created: ";v1$ print ' drawing part gosub [axes] call drawVector v1$ call waitClick 'copying a vector. Just assign to string variable v2$=v1$ print "Getting a components of a vector:" print vectX(v1$) print vectY(v1$) #gr "color green" call drawVector vect$(vectX(v1$), 0) #gr "color blue" call drawVector vect$(0, vectY(v1$)) call waitClick print "Length of a vector:" print vectLen(v1$) print print "Unit vector (length=1) with same direction:" u1$=vectUnit$(v1$) print u1$ print "and it's length is (as should be):" print vectLen(u1$) print #gr "color cyan" call drawVector u1$ call waitClick print "Adding vectors" print "let's make another vector" v3$=vect$(1,-2) print v3$ print "The sum (";v1$;") + (";v3$;") is" print vectAdd$(v1$,v3$) print gosub [axes] call drawVector v1$ #gr "color green" call drawVector v3$ #gr "color blue" call waitClick call drawVector vectAdd$(v1$,v3$) call waitClick print "Subtracting same two vectors" print "(";v1$;") - (";v3$;") is" print vectSub$(v1$,v3$) print gosub [axes] call drawVector v1$ #gr "color green" call drawVector v3$ call waitClick #gr "color blue" call drawVector vectSub$(v1$,v3$) call waitClick print "Dot product of same two vectors" print "(";v1$;")*(";v3$;") is" print vectDotProduct(v1$,v3$) print "as a side note, it is 0 for perpendicular vectors" print print "Scaling a vector" print "by half" print vectScale$(0.5,v1$) print "3x" print vectScale$(3,v1$) print "reverse vector by multiplying it by -1" print vectScale$(-1,v1$) print gosub [axes] call drawVector v1$ #gr "color green" #gr "size 3" call drawVector vectScale$(0.5,v1$) call waitClick #gr "color blue" #gr "size 1" call drawVector vectScale$(3,v1$) call waitClick #gr "color cyan" #gr "size 2" call drawVector vectScale$(-1,v1$) call waitClick print "We can decompose any vector into sum " print "of normal and tangential parts along any direction" print "First, let's try along OX axis" base$ = vect$(1,0) print "The direction is "; base$ t$=vectTangent$(v1$,base$) print "Tangential part is ";t$ n$=vectNorm$(v1$,base$) print "Normal part is ";n$ print "Their sum is "; vectAdd$(t$,n$) print "(same as initial vector)" print gosub [axes] call drawVector v1$ #gr "size 4" #gr "color cyan" call drawVector base$ call waitClick #gr "size 2" #gr "color blue" call drawVector t$ call waitClick #gr "color green" call drawVector n$ call waitClick print "Now try it with another direction" base$ = v3$ print "The direction is "; base$ t$=vectTangent$(v1$,base$) print "Tangential part is ";t$ n$=vectNorm$(v1$,base$) print "Normal part is ";n$ print "Their sum is "; vectAdd$(t$,n$) print "(should be same as initial vector)" print "(Well, you see there is roundoff errors possible)" print gosub [axes] call drawVector v1$ #gr "size 4" #gr "color cyan" call drawVector base$ call waitClick #gr "size 2" #gr "color blue" call drawVector t$ call waitClick #gr "color green" call drawVector n$ call waitClick print "Angle between vector and OX axis, radians" print vectAngle(v1$) print print "So with length and angle, we can convert to polar coords" print "Vector ";v1$;" is" print "Polar radius and angle " r=vectLen(v1$) a=vectAngle(v1$) print r, a print print "There is a function to convert from polar to cartesian" print vectFromPolar$(r, a) print "(should be same as initial vector)" print "Some other vector: length 7 at angle 60 degrees" r=7 a=60*acs(-1)/180 'acs(-1)==pi print vectFromPolar$(r, a) print gosub [axes] call drawVector v1$ call waitClick #gr "color blue" call drawVector vectFromPolar$(r, a) call waitClick print "Rotating vector by arbitrary agle" print "by 30 degrees" print vectRotate$(v1$,30*acs(-1)/180) print "by 90 degrees" a=90*acs(-1)/180 'acs(-1)==pi, so it's actually pi/2 print vectRotate$(v1$,a) print "by -90 degrees" print vectRotate$(v1$,0-a) 'JB doesn't allow "-a" print "by 180 degrees" print vectRotate$(v1$,180*acs(-1)/180) print "(Well, easier to myltiply by -1)" print gosub [axes] call drawVector v1$ #gr "color green" call drawVector vectRotate$(v1$,30*acs(-1)/180) call waitClick #gr "color blue" call drawVector vectRotate$(v1$,a) call waitClick #gr "color cyan" call drawVector vectRotate$(v1$,0-a) call waitClick #gr "color black" call drawVector vectRotate$(v1$,180*acs(-1)/180) call waitClick #gr "place 70 200" #gr "\";"*That's all, folks.*" print "*That's all, folks.*" wait '---------------------------------------- 'parts related to graphic part of the demo [initWindow] UpperLeftX = 1 UpperLeftY UpperLeftY = 1 WindowWidth = 400 WindowHeight WindowHeight = 400 open "Vector demo" for graphics_nsb_nf as #gr #gr "trapclose [quit]" #gr "home; down; posxy cx cy" 'print cx, cy offset$ = vect$(cx, cy) scale = 20 #gr "place 70, 120" #gr "\";"Please align this window" #gr "\";"along with mainwin (console)." #gr "\";"It will print stuff to mainwin, " #gr "\";"while drawing in this window." #gr "\";"" #gr "\";"Use left mouse button click" #gr "\";"to advance." return sub waitClick #gr "flush" #gr "when leftButtonDown [cont]" wait [cont] #gr "when leftButtonDown" exit sub [quit] 'and we could close while waiting close #gr print "*program ended, you can close this window*" end end sub function fix$(v$) '"fixes" coords of vector to use on screen: 'applies scaling and offset. 'fix$ = vectAdd$(offset$, vectScale$(scale,v$)) 'really simple, isn't? 'Well, almost. "Y" should be reversed fix$=vectAdd$(offset$, vectScale$(scale, reverseY$(v$))) end function function reverseY$(v$) x=val(word$(v$,1)) y=val(word$(v$,2)) reverseY$=x;" ";0-y end function [axes] 'axes bounds = 7 'like, -7 .. 7 #gr "cls" #gr "color black; size 1" #gr "line ";fix$(vect$(-1-bounds,0));" ";fix$(vect$(1+bounds,0)) #gr "line ";fix$(vect$(0,-1-bounds));" ";fix$(vect$(0,1+bounds)) for i = 0-bounds to bounds #gr "line ";fix$(vect$(i,-0.1));" ";fix$(vect$(i,0.1)) #gr "line ";fix$(vect$(-0.1,i));" ";fix$(vect$(0.1,i)) next #gr "size 2" #gr "color red" 'default first vector will be red, width 2 #gr "flush" return sub drawVector v$ #gr "line ";fix$(vect$(0,0));" ";fix$(v$) end sub [quit] close #gr print "*program ended, you can close this window*" end '================================= 'vector 2d lib 'vectors as "x y" pairs, to be splitted by Word$ 'by tsh73, Feb 2013 function vect$(x,y) vect$=x;" ";y end function function vectX(v$) vectX=val(word$(v$,1)) end function function vectY(v$) vectY=val(word$(v$,2)) end function function vectLen(v$) x=val(word$(v$,1)) y=val(word$(v$,2)) vectLen=sqr(x*x+y*y) end function function vectUnit$(v$) x=val(word$(v$,1)) y=val(word$(v$,2)) vectLen=sqr(x*x+y*y) vectUnit$=x/vectLen;" ";y/vectLen end function function vectAdd$(v1$,v2$) x1=val(word$(v1$,1)) y1=val(word$(v1$,2)) x2=val(word$(v2$,1)) y2=val(word$(v2$,2)) vectAdd$=x1+x2;" ";y1+y2 end function function vectSub$(v1$,v2$) x1=val(word$(v1$,1)) y1=val(word$(v1$,2)) x2=val(word$(v2$,1)) y2=val(word$(v2$,2)) vectSub$=x1-x2;" ";y1-y2 end function function vectDotProduct(v1$,v2$) x1=val(word$(v1$,1)) y1=val(word$(v1$,2)) x2=val(word$(v2$,1)) y2=val(word$(v2$,2)) vectDotProduct=x1*x2+y1*y2 end function function vectScale$(a,v$) 'a * vector v$ x=val(word$(v$,1)) y=val(word$(v$,2)) vectScale$=a*x;" ";a*y end function function vectTangent$(v$,base$) n$=vectUnit$(base$) vectTangent$=vectScale$(vectDotProduct(n$,v$),n$) end function function vectNorm$(v$,base$) vectNorm$=vectSub$(v$,vectTangent$(v$,base$)) end function function vectAngle(v$) x=val(word$(v$,1)) y=val(word$(v$,2)) vectAngle=atan2(y,x) end function function vectFromPolar$(rho, phi) vectFromPolar$=rho*cos(phi);" ";rho*sin(phi) end function function vectRotate$(v$,alpha) x=val(word$(v$,1)) y=val(word$(v$,2)) rho=sqr(x*x+y*y) phi=atan2(y,x)+alpha vectRotate$=rho*cos(phi);" ";rho*sin(phi) end function function dePi$(x) 'pure aestetics pi = acs(-1) dePi$=x/pi;"Pi" end function '--------------------------- function atan2(y,x) pi = acs(-1) 'could be made global to save some ticks if x <> 0 then arctan = atn(y/x) select case case x > 0 atan2 = arctan case y>=0 and x<0 atan2 = pi + arctan case y<0 and x<0 atan2 = arctan - pi case y>0 and x=0 atan2 = pi / 2 case y<0 and x=0 atan2 = pi / -2 end select end function [[code]]